MEMS GYROSCOPE HAVING AN IMPROVED REJECTION OF THE QUADRATURE ERROR

    公开(公告)号:US20230036566A1

    公开(公告)日:2023-02-02

    申请号:US17868479

    申请日:2022-07-19

    Abstract: The MEMS gyroscope is formed by a substrate, a first mass and a second mass, wherein the first and the second masses are suspended over the substrate and extend, at rest, in a plane of extension defining a first direction and a second direction transverse to the first direction. The MEMS gyroscope further has a drive structure coupled to the first mass and configured, in use, to cause a movement of the first mass in the first direction, and an elastic coupling structure, which extends between the first mass and the second mass and is configured to couple the movement of the first mass in the first direction with a movement of the second mass in the second direction. The elastic coupling structure has a first portion having a first stiffness and a second portion having a second stiffness greater than the first stiffness.

    FREQUENCY MODULATION MEMS TRIAXIAL GYROSCOPE

    公开(公告)号:US20220404150A1

    公开(公告)日:2022-12-22

    申请号:US17821724

    申请日:2022-08-23

    Abstract: A frequency modulation MEMS triaxial gyroscope, having two mobile masses; a first and a second driving body coupled to the mobile masses through elastic elements rigid in a first direction and compliant in a second direction transverse to the first direction; and a third and a fourth driving body coupled to the mobile masses through elastic elements rigid in the second direction and compliant in the first direction. A first and a second driving element are coupled to the first and second driving bodies for causing the mobile masses to translate in the first direction in phase opposition. A third and a fourth driving element are coupled to the third and fourth driving bodies for causing the mobile masses to translate in the second direction and in phase opposition. An out-of-plane driving element is coupled to the first and second mobile masses for causing a translation in a third direction, in phase opposition. Movement-sensing electrodes generate frequency signals as a function of external angular velocities.

    MICROELECTROMECHANICAL DEVICE WITH OUT-OF-PLANE STOPPER STRUCTURE

    公开(公告)号:US20220380202A1

    公开(公告)日:2022-12-01

    申请号:US17744310

    申请日:2022-05-13

    Abstract: A microelectromechanical device includes a substrate, a first structural layer, and a second structural layer of semiconductor material. A sensing mass extends in the first structural layer and is coupled to the substrate by first elastic connections to enable oscillation of the sensing mass in a sensing direction perpendicular to the substrate by a maximum amount relative to a resting position of the sensing mass. An out-of-plane stopper structure includes an anchorage fixed to the substrate and a mechanical end-of-travel structure, which extends in the second structural layer, faces the sensing mass, and is separated therefrom by a gap having a width smaller than the maximum displacement distance of the sensing mass. The mechanical end-of-travel structure is coupled to the anchorage by second elastic connections that enable movement of the mechanical end-of-travel structure in the sensing direction in response to an impact of the sensing mass.

    MICROELECTROMECHANICAL GYROSCOPE WITH OUT-OF-PLANE DETECTION MOVEMENT

    公开(公告)号:US20230228570A1

    公开(公告)日:2023-07-20

    申请号:US18150720

    申请日:2023-01-05

    CPC classification number: G01C19/5712

    Abstract: A microelectromechanical gyroscope is provided with a detection structure having: a substrate with a top surface parallel to a horizontal plane (xy); a mobile mass, suspended above the substrate to perform, as a function of a first angular velocity (Ωx) around a first axis (x) of the horizontal plane (xy), at least a first detection movement of rotation around a second axis (y) of the horizontal plane; and a first and a second stator elements integral with the substrate and arranged underneath the mobile mass to define a capacitive coupling, a capacitance value thereof is indicative of the first angular velocity (Ωx). The detection structure has a single mechanical anchorage structure for anchoring both the mobile mass and the stator elements to the substrate, arranged internally with respect to the mobile mass, which is coupled to this single mechanical anchorage structure by coupling elastic elements yielding to torsion around the second axis; the stator elements are integrally coupled to the single mechanical anchorage structure in an arrangement suspended above the top surface of the substrate.

    MICROELECTROMECHANICAL GYROSCOPE WITH COMPENSATION OF QUADRATURE ERROR DRIFT

    公开(公告)号:US20160313123A1

    公开(公告)日:2016-10-27

    申请号:US15201133

    申请日:2016-07-01

    Abstract: A microelectromechanical gyroscope, includes: a supporting body; a first movable mass and a second movable mass, which are oscillatable according to a first driving axis and tiltable about respective a first and second sensing axes and are symmetrically arranged with respect to a center of symmetry; first sensing electrodes and a second sensing electrodes associated with the first and second movable masses and arranged on the supporting body symmetrically with respect to the first and second sensing axis, the first and second movable masses being capacitively coupled to the respective first sensing electrode and to the respective second sensing electrode, a bridge element elastically coupled to respective inner ends of the first movable mass and of the second movable mass and coupled to the supporting body so as to be tiltable about an axis transverse to the first driving axis.

Patent Agency Ranking