Abstract:
An electronic device is formed by a sequence of at least two thyristors coupled in series in a same conduction direction. Each thyristor has a gate of a first conductivity type. The gates of the first conductivity type for the thyristors in the sequence are coupled together in order to form a single control gate.
Abstract:
A semiconductor device for protection from electrostatic discharge includes a number of modules for protection from electrostatic discharge. Each module includes a thyristor having terminals and a gate, and a diode coupled in antiparallel to the terminals of the thyristor. Each module is sized to share a saturation current with neighboring modules when an electrostatic discharge current is received. A resistive network couples modules between two terminals. A triggering circuit includes a common triggering output that is coupled to the gate of the thyristor of each module and a common buried semiconductor layer contacts each module.
Abstract:
A semiconductor device for protection from electrostatic discharge includes a number of modules for protection from electrostatic discharge. Each module includes a thyristor having terminals and a gate, and a diode coupled in antiparallel to the terminals of the thyristor. Each module is sized to share a saturation current with neighboring modules when an electrostatic discharge current is received. A resistive network couples modules between two terminals. A triggering circuit includes a common triggering output that is coupled to the gate of the thyristor of each module and a common buried semiconductor layer contacts each module.
Abstract:
At least three electrically conducting blocks are disposed within an isolating region; and at least two of them are mutually separated and capacitively coupled by a part of the isolating region. At least two of them, being semiconductor, have opposite types of conductivity or identical types of conductivity, but with different concentrations of dopants, and these are in mutual contact by one of their sides. The mutual arrangement of these blocks within the isolating region, their type of conductivity and their concentration of dopants form at least one electronic module. Some of the blocks define input and output blocks.
Abstract:
An electronic device includes first and second terminals with an electronic circuit coupled there between. The electronic circuit includes a protection circuit and a resistive-capacitive circuit. The resistive-capacitive circuit triggers the protection circuit to protect against electrostatic discharges in the presence of a current pulse between the first and second terminals. A control circuit is configured to slow down a discharge from the resistive-capacitive circuit when the protection circuit is triggered.