Abstract:
A method for smoothing current consumed by an electronic device is based on a series of current copying operations and on a current source delivering a reference current. The reference current is delivered in such a manner that current consumed as seen from the power supply depends on the reference current.
Abstract:
An adjustable bandgap reference voltage includes a first circuit for generating IPTAT, a second circuit for generating ICTAT, and an output module configured to generate the reference voltage. The first circuit includes a first amplifier connected to terminals of a core for equalizing voltages across the terminals, where the first amplifier has a first stage that is biased by the current inversely proportional to absolute temperature and is arranged according to a folded setup with first PMOS transistors arranged according to a common-gate setup. The first circuit also includes a feedback stage with an input connected to the first amplifier output. The feedback stage output is connected to the first stage input and to a terminal of the core. The second circuit includes a follower amplifier connected to a terminal of the core and separated from the first amplifier and the output module is connected to the feedback stage.
Abstract:
A system for detecting a laser attack on an integrated circuit chip formed in a semiconductor substrate, including a detection device capable of detecting voltage variations of the substrate.
Abstract:
The regulator with a low dropout voltage comprises an error amplifier comprising a differential pair of input transistors and a circuit with folded cascode structure connected to the output of the said differential pair, an output stage connected to the output node of the error amplifier, and a Miller compensation capacitor connected between the output stage and the cascode node on the output side (XP) of the cascode circuit; the error amplifier furthermore comprises at least one inverting amplifier module in a feedback loop between the said cascode node and the gate of the cascode transistor of the cascode circuit connected between the said cascode node and the said output node.
Abstract:
An electronic device includes a starting circuit configured to compare a value representative of the power supply voltage with a threshold, wherein the circuit includes a generator of a current proportional to temperature.
Abstract:
An electronic device includes a starting circuit configured to compare a value representative of the power supply voltage with a threshold, wherein the circuit includes a generator of a current proportional to temperature.
Abstract:
An electronic chip including a plurality of buried doped bars and a circuit for detecting an anomaly of an electric characteristic of the bars.
Abstract:
A circuit includes a first PMOS transistor that includes a first PMOS source coupled to a first input node, a first PMOS gate, and a first PMOS drain. A second PMOS transistor includes a second PMOS source coupled to a second input node, a second PMOS gate, and a second PMOS drain coupled to the second PMOS gate. A first resistor coupled between the first PMOS source and a ground node. A first diode element coupled between the first resistor and the ground node and a second diode element coupled between the second PMOS source and the ground node. A third PMOS transistor includes a third PMOS gate, a third PMOS source coupled to a supply node, and a third PMOS drain coupled to the first input node. A fourth PMOS transistor includes a fourth PMOS gate coupled to the third PMOS gate, a fourth PMOS source coupled to the supply node, and a fourth PMOS drain coupled to the second input node.
Abstract:
A circuit includes a first PMOS transistor that includes a first PMOS source coupled to a first input node, a first PMOS gate, and a first PMOS drain. A second PMOS transistor includes a second PMOS source coupled to a second input node, a second PMOS gate, and a second PMOS drain coupled to the second PMOS gate. A first resistor coupled between the first PMOS source and a ground node. A first diode element coupled between the first resistor and the ground node and a second diode element coupled between the second PMOS source and the ground node. A third PMOS transistor includes a third PMOS gate, a third PMOS source coupled to a supply node, and a third PMOS drain coupled to the first input node. A fourth PMOS transistor includes a fourth PMOS gate coupled to the third PMOS gate, a fourth PMOS source coupled to the supply node, and a fourth PMOS drain coupled to the second input node.
Abstract:
The regulator with a low dropout voltage comprises an error amplifier comprising a differential pair of input transistors and a circuit with folded cascode structure connected to the output of the said differential pair, an output stage connected to the output node of the error amplifier, and a Miller compensation capacitor connected between the output stage and the cascode node on the output side (XP) of the cascode circuit; the error amplifier furthermore comprises at least one inverting amplifier module in a feedback loop between the said cascode node and the gate of the cascode transistor of the cascode circuit connected between the said cascode node and the said output node.