Abstract:
A prism sheet includes: a first portion including a prism elongated in a first direction; and a second portion including a prism elongated in a second direction different from the first direction. The second direction is vertical to a light incident surface of a light guide plate of a backlight unit, a light source of the backlight unit faces the light incident surface of the light guide plate, and the prism sheet overlaps a light emitting surface of the light guide plate.
Abstract:
In a light source module and a backlight assembly having the light source module, the light source module includes a flexible printed circuit board; a light source part on an upper surface of the flexible printed circuit board and including a light emitting chip; a substrate on a lower surface of the flexible printed circuit board; and a heat dissipating part which extends from the light emitting chip and contacts the substrate.
Abstract:
An organic light emitting display device includes a substrate, a lower electrode, a light emitting layer, an upper electrode, and a light guide structure. The substrate includes a sub-pixel region and a transparent region. The lower electrode is disposed in the sub-pixel region on the substrate. The light emitting layer is disposed on the lower electrode, and includes an organic emission layer. The upper electrode is disposed on the light emitting layer. The light guide structure is disposed on the upper electrode, and partially overlaps the organic emission layer that is located at the sub-pixel region and the substrate that is located at the transparent region in a plan view.
Abstract:
A head mount display device includes a display device and a processor. The display device includes an image compensator, a data driver, a scan driver, a timing controller, and a display panel. The image compensator receives an image data corresponding to a user's field of view and motion information, calculates a scaling value that controls a size of a masking area that controls a range of the user's field of view by masking a peripheral portion of an image corresponding to the image data based on the motion information, and generates compensation image data based on the image data and the scaling value.
Abstract:
An organic light emitting display apparatus including a substrate including a plurality of pixel areas; a pixel electrode on the substrate; an opposite electrode on the pixel electrode, the opposite electrode transmitting light; an organic light emitting layer between the pixel electrode and the opposite electrode, the organic light emitting layer emitting a first light toward the opposite electrode; a light emitting layer on the opposite electrode, the light emitting layer absorbing a portion of the first light and emitting a second light; and a sealing layer on the light emitting layer, the sealing layer sealing the pixel electrode, the opposite electrode, the organic light emitting layer, and the light emitting layer.
Abstract:
An organic light emitting display apparatus including a substrate including a plurality of pixel areas; a pixel electrode on the substrate; an opposite electrode on the pixel electrode, the opposite electrode transmitting light; an organic light emitting layer between the pixel electrode and the opposite electrode, the organic light emitting layer emitting a first light toward the opposite electrode; a light emitting layer on the opposite electrode, the light emitting layer absorbing a portion of the first light and emitting a second light; and a sealing layer on the light emitting layer, the sealing layer sealing the pixel electrode, the opposite electrode, the organic light emitting layer, and the light emitting layer.
Abstract:
A transparent display panel includes a transparent display structure and a light transmittance adjusting structure. The transparent display structure includes a display region and a transmittance region. The light transmittance adjusting structure is located over or under the transparent display structure. The light transmittance adjusting structure includes a volume changeable material of which a volume is changed in response to intensity of incident light or a photochromic material of which a coloring degree is changed in response to the intensity of incident light. The transparent display panel effectively improves quality of an image displayed on the transparent display panel by maintaining or adjusting a contrast ratio of the image according to the intensity of the incident light.
Abstract:
An organic light emitting display apparatus including a substrate including a plurality of pixel areas; a pixel electrode on the substrate; an opposite electrode on the pixel electrode, the opposite electrode transmitting light; an organic light emitting layer between the pixel electrode and the opposite electrode, the organic light emitting layer emitting a first light toward the opposite electrode; a light emitting layer on the opposite electrode, the light emitting layer absorbing a portion of the first light and emitting a second light; and a sealing layer on the light emitting layer, the sealing layer sealing the pixel electrode, the opposite electrode, the organic light emitting layer, and the light emitting layer.
Abstract:
An organic light emitting display apparatus including a substrate including a plurality of pixel areas; a pixel electrode on the substrate; an opposite electrode on the pixel electrode, the opposite electrode transmitting light; an organic light emitting layer between the pixel electrode and the opposite electrode, the organic light emitting layer emitting a first light toward the opposite electrode; a light emitting layer on the opposite electrode, the light emitting layer absorbing a portion of the first light and emitting a second light; and a sealing layer on the light emitting layer, the sealing layer sealing the pixel electrode, the opposite electrode, the organic light emitting layer, and the light emitting layer.
Abstract:
A display apparatus includes a display panel, a driving controller and a data driver. The display panel displays an image based on input image data. The driving controller generates a data signal based on the input image data, determines an optical flow based on previous frame data of the input image data and present frame data of the input image data and determines a user's self-motion using the optical flow. The data driver converts the data signal to a data voltage and outputs the data voltage to the display panel.