Abstract:
A display device includes a display panel, a source driving part, a gate driving part, a readout part and a pulse generating part. The display panel includes an array substrate on which a source line and a gate line are formed, and an opposite substrate on which a common electrode is formed. The readout part is electrically connected with at least one of the lines of the array substrate and the common electrode of the opposite substrate, and reads out a detection signal during an elimination period of a frame period. The pulse generating part outputs a control pulse for driving the readout part during the elimination period. Accordingly, a detection signal is read out through lines or a common electrode that are/is formed for displaying an image, so that an aperture ratio may be increased, and a manufacturing process thereof may be simplified.
Abstract:
An organic light emitting display capable of improving display quality. The organic light emitting display includes effective pixels positioned in an effective display unit, at least one dummy pixels positioned in a dummy display unit in order to generate light with predetermined luminance, at least one photodiodes arranged on the dummy display unit to be adjacent to the dummy pixels, and a sensing unit for extracting first resistance information from organic light emitting diodes (OLED) included in the effective pixels, extracting second resistance information from OLEDs included in the dummy pixels, and extracting luminance information corresponding to the second resistance information from the photodiodes.
Abstract:
A touch screen display device includes a plurality of pixels and a plurality of touch sensing units. Each touch sensing unit includes a sensing transistor, a first touch electrode between a gate electrode and a semiconductor layer of the sensing transistor, a second touch electrode spaced from the first touch electrode, and a coupling portion to couple the first and second touch electrodes.
Abstract:
An organic light emitting device includes an organic light emitting element and a sensor. The organic light emitting element includes an organic layer between an anode and cathode. The sensor detects a quality that provides an indication of the degradation of the organic layer of the light emitting element. The sensor may be a chemical sensor or another type of sensor. The sensor may be fixed permanently within or outside the light emitting element, and electronic measures may be taken to reduce performance loss as a result of the detected degradation of the organic layer.
Abstract:
A method of adjusting luminance of an organic light emitting display device is provided. By the method, initial compensation data are derived from optical images of a plurality of pixels, a look-up table (LUT) is generated using the initial compensation data, compensation data are derived by measuring deterioration degrees of the pixels, the LUT is updated by applying a filter for redistributing the compensation data among the pixels, an operation for adjusting the luminance are performed with image data of the pixels and the compensation data stored in the LUT, and driving data that are calculated by the operation for adjusting the luminance are outputted.
Abstract:
An organic light emitting display capable of improving display quality. The organic light emitting display includes effective pixels positioned in an effective display unit, at least one dummy pixels positioned in a dummy display unit in order to generate light with predetermined luminance, at least one photodiodes arranged on the dummy display unit to be adjacent to the dummy pixels, and a sensing unit for extracting first resistance information from organic light emitting diodes (OLED) included in the effective pixels, extracting second resistance information from OLEDs included in the dummy pixels, and extracting luminance information corresponding to the second resistance information from the photodiodes.
Abstract:
A liquid crystal display (“LCD”) includes: a liquid crystal panel, a timing controller which receives previous image data and current image data, corrects or does not correct the current image data according to a reference bit of conversion image data generated using the previous image data, and outputs a display image signal to the liquid crystal panel, and a data driver which receives the display image signal and applies a data voltage corresponding to the display image signal to the liquid crystal panel.
Abstract:
An organic light emitting display device includes a plurality of data lines, a scan driver, a sensing control line driver, a data driver, and a switching unit. The scan driver supplies a scan signal to a plurality of scan lines. The sensing control line driver supplies a sensing control signal to a plurality of sensing control lines. The data driver supplies a data signal to a plurality of data output lines. The switching unit selectively couples each data line to one of a corresponding data output line and a corresponding sensing line. The switching unit further selectively supplies a write control signal to each write control line.