Abstract:
A display panel with microcavities each having ends of asymmetric cross-sectional area. An exemplary display panel has a substrate; an electrode disposed on the substrate; and a supporting member disposed on the electrode. The supporting member is shaped to form a cavity between the supporting member and the electrode. The cavity has a first opening at one end of the supporting member and a second opening at an opposite end of the supporting member, the first opening being positioned over the electrode. A cross-sectional area of the first opening is smaller than a cross-sectional area of the second opening.
Abstract:
A display device includes a display panel including a display area and a non-display area; a first signal line in the non-display area and transmitting an initialization voltage; a connection wire in the non-display area and electrically connected to the first signal line; a bridge pattern connecting the first signal line to the connection wire; an insulating layer between the first signal line and the bridge pattern; a partition wall on the bridge pattern; and a spacer on the partition wall, wherein the insulating layer includes a first contact hole overlapping the first signal line, and a second contact hole overlapping the connection wire, the first signal line is connected to the bridge pattern through the first contact hole, the bridge pattern is connected to the connection wire through the second contact hole, the partition wall covers the first contact hole, and the spacer overlaps the first contact hole.
Abstract:
A curved display device including a first substrate, a thin film transistor (TFT) disposed on the first substrate, a pixel electrode connected to the TFT, a second substrate overlapping the first substrate, a liquid crystal layer disposed between the first and the second substrates, and a common electrode disposed between the second substrate and the liquid crystal layer, in which the pixel electrode includes a cross-shaped stem portion having a horizontal stem portion, a vertical stem portion, and a plurality of fine branches extending from the cross-shaped stem portion, at least one of the fine branches includes a first portion and a second portion having a width greater than that of the first portion, and an extending line from a boundary between the first portion and the second portion is sloped at an angle in a range of −10 degrees to +10 degrees with respect to the vertical stem portion.
Abstract:
A liquid-crystal display device includes a substrate, a thin-film transistor (“TFT”) disposed on the substrate, an insulation film disposed on the TFT, a pixel electrode disposed on the insulation film, an expanded electrode disposed in a same layer as the pixel electrode, a connection electrode which is disposed in the same layer as the pixel electrode and connects the pixel electrode with the expanded electrode, and a shield electrode disposed in the same layer as the pixel electrode and separated from the pixel electrode, the connection electrode and the expanded electrode, where the expanded electrode is electrically connected to the TFT via a contact hole defined in the insulation film, and where the shield electrode includes a first shield portion disposed between the pixel electrode and the contact hole in a plan view, and a second shield portion other than the first shield portion.