Abstract:
An antenna and a method of manufacturing the antenna are provided. The antenna may include an antenna surface, a ground plane, and an air layer comprising a porous structure.
Abstract:
An apparatus for estimating bio-information, may include: a main body; a photoplethysmogram (PPG) sensor disposed in the main body and configured to measure a PPG signal from an object of a user; an internal pressure sensor disposed in a closed space formed in the main body, and configured to measure a pressure applied to the closed space when the object applies force to a surface of the main body; and a processor configured to estimate the bio-information of the user based on the PPG signal and the pressure applied to the closed space.
Abstract:
An apparatus for measuring bio-information includes: a light source including a first light emitter that emits first light of a first wavelength, and a second light emitter that emits second light of a second wavelength; an image sensor including a first pixel region including first pixels that detect the first light reacted with an object, and a second pixel region including second pixels that detect the second light reacted with the object; a light source controller that controls the first light emitter to emit the first light of the first wavelength when a first light exposure operation is performed on the first pixels, and controls the second light emitter to emit the second light of the second wavelength when a second light exposure operation is performed on the second pixels; and a processor that obtains a bio-signal of the object from data detected by the image sensor.
Abstract:
An apparatus for estimating bio-information, includes a sensor including a cover having a transmitting area provided at a center of the cover, and non-transmitting areas provided at both edges of the cover, a light source configured to emit light onto an object that is in contact with the cover, and a detector configured to detect a first optical signal of the emitted light that is scattered or reflected from the object after passing through the transmitting area, and a second optical signal of the emitted light that is reflected from the non-transmitting areas. The apparatus further includes a processor configured to estimate bio-information, based on the detected first optical signal and the detected second optical signal.
Abstract:
An apparatus for measuring bio-information may include a pulse wave sensor that may measure a pulse wave signal from an object in contact with a measurement surface. The apparatus may include a force sensor that may measure a contact force between the pulse wave sensor and the object. The apparatus may include a fastener configured to fasten the pulse wave sensor to an electronic device such that the pulse wave sensor is rotatable around a center axis in a length direction of the pulse wave sensor. The apparatus may include a processor that may determine a direction in which a measurement region of the pulse wave signal or the measurement surface of the pulse wave sensor is oriented, select a measurement mode from among a plurality of measurement modes, and estimate bio-information of the object.
Abstract:
A bio-signal acquiring apparatus includes a sensor part and a signal processor. The sensor part includes a bio-signal sensor, a load sensor, and an ultrasonic sensor array, the bio-signal sensor configured to detect a bio-signal of an object that comes into contact with the sensor part, the load sensor configured to detect a contact load of the object, and the ultrasonic sensor array configured to detect contact load distribution of the object. The signal processor is configured to obtain a contact load of the object at a region of interest based on the contact load and the contact load distribution, and configured to output the contact load of the object at the region of interest and the bio-signal.
Abstract:
An apparatus and a method for charging a wearable device is provided. The apparatus for charging a wearable device may include a power receiver disposed in the wearable device and configured to receive power and supply the power to the wearable device; a connector configured to comprise a first magnet and a magnetic member, wherein the first magnet is electrically connected to the power receiver through the magnetic member while the first magnet is attached to the power receiver by a first magnetic force; and a power supply configured to supply the power to the power receiver via the connector.
Abstract:
A bio-electrode device, bio-measurement device, and a method for implementing a bio-electrode device are provided. Information, such as usage information or patient information, may be maintained in a bio-electrode device, and the information maintained may be transferred to a bio-measurement device in response to the bio-electrode device being coupled to the bio-measurement device.
Abstract:
An ultrasonic distance sensor is provided. The ultrasonic distance sensor according to an embodiment includes: a signal generator configured to generate a frequency-modulated continuous ultrasonic signal array; a gating switch configured to perform time gating to allow part of ultrasonic signals in the continuous ultrasonic signal array to pass therethrough; a transmitter configured to emit ultrasonic signals, having passed through the gating switch, toward an object; a receiver configured to receive an echo signal reflected from the object; and a signal processor configured to measure a location of the object by using the echo signal.
Abstract:
An apparatus for estimating blood pressure includes: a sensor, and a processor configured to estimate blood pressure based on a PPG signal and a contact pressure signal measured by the sensor. The sensor includes: a transparent elastic body; a first polarizing film provided on a surface of the transparent elastic body and configured to come into contact with the object; a light source provided under the transparent elastic body and configured to emit light toward the object; a first detector and a second detector provided under the transparent elastic body and configured to detect light, passing through the first polarizing film after being emitted by the light source and scattered or reflected from the object, to measure the PPG signal; and a second detector provided under the transparent elastic body and configured to detect light, not passing through the first polarizing film, to measure the contact pressure signal.