Abstract:
A semiconductor device includes a substrate including a first region and a second region, fin type active areas extending in a first direction away from the substrate in each of the first and second regions, a plurality of nanosheets extending parallel to an upper surface of the fin type active areas and being spaced apart from the upper surface of the fin type active areas, a gate extending over the fin type active areas in a second direction crossing the first direction, a gate dielectric layer interposed between the gate and each of the nanosheets, first source and drain regions included in the first region and second source and drain regions included in the second region, and insulating spacers interposed between the fin type active areas and the nanosheets, wherein air spacers are interposed between the insulating spacers and the first source and drain regions.
Abstract:
A method of determining whether an image is to be re-encoded includes obtaining a first quantization matrix from an image file including the image, the image being encoded by quantization based on the first quantization matrix including a plurality of first quantization parameters; obtaining a second quantization matrix from a re-encoding device, the second quantization matrix including a plurality of second quantization parameters and having the same size as the first quantization matrix; determining a comparison coefficient based on elements greater than ‘0’ among elements of a comparison matrix obtained by subtracting the first quantization matrix from the second quantization matrix; and determining that the image is to be decoded by inverse quantization based on the first quantization matrix and the decoded image is to be re-encoded by quantization based on the second quantization matrix, when the comparison coefficient is greater than a first threshold value.
Abstract:
Provided are an optical lens assembly and an electronic apparatus including the optical lens assembly. The optical lens assembly includes a first lens group having positive refractive power, a stop, and a second lens group having positive refractive power that are arranged from an object side to an image side. The first lens group includes a first lens having negative refractive power and a meniscus shape convex toward the object side, a second lens having negative refractive power, and at least one other lens. The second lens group includes at least three lenses, and a lens of the second lens group closest to the image side has at least one inflection point.
Abstract:
An apparatus for generating a user interface image for indicating a patient's health-related information includes an information receiver for receiving the patient's health-related information, an information arranger and classifier for arranging at least one piece of information included in the health-related information in a time sequence, and a user interface (UI) generator for generating the user interface image for displaying the at least one piece of information that is arranged in a time sequence, along a first axis, whereby a patient and a doctor may easily recognize the health-related information.
Abstract:
A semiconductor device includes a substrate including a first region and a second region, fin type active areas extending in a first direction away from the substrate in each of the first and second regions, a plurality of nanosheets extending parallel to an upper surface of the fin type active areas and being spaced apart from the upper surface of the fin type active areas, a gate extending over the fin type active areas in a second direction crossing the first direction, a gate dielectric layer interposed between the gate and each of the nanosheets, first source and drain regions included in the first region and second source and drain regions included in the second region, and insulating spacers interposed between the fin type active areas and the nanosheets, wherein air spacers are interposed between the insulating spacers and the first source and drain regions.
Abstract:
Provided is a semiconductor device including: a fin structure on a substrate including a negative channel field-effect transistor (nFET) region and a positive channel field-effect transistor (pFET) region; a gate structure on the fin structure; and a source/drain structure adjacent to the gate structure, wherein the source/drain structure formed in the nFET region is an epitaxial layer including an n-type impurity at a concentration of about 1.8×1021/cm3 or more, includes silicon (Si) and germanium (Ge) on an outer portion of the source/drain structure, and includes Si but not Ge in an inner portion of the source/drain structure, wherein an inclined surface contacting an uppermost surface of the source/drain structure forms an angle of less than about 54.7° with a top surface of the fin structure.
Abstract:
A semiconductor device includes a substrate including a first region and a second region, fin type active areas extending in a first direction away from the substrate in each of the first and second regions, a plurality of nanosheets extending parallel to an upper surface of the fin type active areas and being spaced apart from the upper surface of the fin type active areas, a gate extending over the fin type active areas in a second direction crossing the first direction, a gate dielectric layer interposed between the gate and each of the nanosheets, first source and drain regions included in the first region and second source and drain regions included in the second region, and insulating spacers interposed between the fin type active areas and the nanosheets, wherein air spacers are interposed between the insulating spacers and the first source and drain regions.
Abstract:
Provided is a semiconductor device including: a fin structure on a substrate including a negative channel field-effect transistor (nFET) region and a positive channel field-effect transistor (pFET) region; a gate structure on the fin structure; and a source/drain structure adjacent to the gate structure, wherein the source/drain structure formed in the nFET region is an epitaxial layer including an n-type impurity at a concentration of about 1.8×1021/cm3 or more, includes silicon (Si) and germanium (Ge) on an outer portion of the source/drain structure, and includes Si but not Ge in an inner portion of the source/drain structure, wherein an inclined surface contacting an uppermost surface of the source/drain structure forms an angle of less than about 54.7° with a top surface of the fin structure.
Abstract:
A zoom lens includes: a first lens group having a positive refractive power and including a plurality of lenses, a second lens group having a negative refractive power, a third lens group having a positive refractive power, a fourth lens group having a negative refractive power and including one lens, and a fifth lens group having a positive refractive power and including one lens. The first through fifth lens groups are subsequently arranged from an object side. An interval between neighboring lens groups changes during zooming from a wide angle position to a telephoto position. The zoom lens satisfies the following inequality, 0.4≦n1−n2≦0.7, where “n1” denotes a refractive index of a first lens from the object side in the first lens group, and “n2” denotes a refractive index of the second lens from the object side in the first lens group.
Abstract:
A zoom lens includes: a first lens group having a positive refractive power and including a plurality of lenses, a second lens group having a negative refractive power, a third lens group having a positive refractive power, a fourth lens group having a negative refractive power and including one lens, and a fifth lens group having a positive refractive power and including one lens. The first through fifth lens groups are subsequently arranged from an object side. An interval between neighboring lens groups changes during zooming from a wide angle position to a telephoto position. The zoom lens satisfies the following inequality, 0.4≦n1−n2≦0.7, where “n1” denotes a refractive index of a first lens from the object side in the first lens group, and “n2” denotes a refractive index of the second lens from the object side in the first lens group.