Abstract:
Imaging systems, such as time-of-flight imaging systems, and methods with pixel sensitivity adjustments. An embodiment includes a method, comprising: for a plurality of pixels having a first output and a second output, measuring the first outputs and the second outputs in response to a demodulation signal; and adjusting the demodulation signal such that a combination of the first outputs is substantially similar to a combination of the second outputs.
Abstract:
A neural processor. In some embodiments, the processor includes a first tile, a second tile, a memory, and a bus. The bus may be connected to the memory, the first tile, and the second tile. The first tile may include: a first weight register, a second weight register, an activations buffer, a first multiplier, and a second multiplier. The activations buffer may be configured to include: a first queue connected to the first multiplier and a second queue connected to the second multiplier. The first queue may include a first register and a second register adjacent to the first register, the first register being an output register of the first queue. The first tile may be configured: in a first state: to multiply, in the first multiplier, a first weight by an activation from the output register of the first queue, and in a second state: to multiply, in the first multiplier, the first weight by an activation from the second register of the first queue.
Abstract:
A system for calculating. A scratch memory is connected to a plurality of configurable processing elements by a communication fabric including a plurality of configurable nodes. The scratch memory sends out a plurality of streams of data words. Each data word is either a configuration word used to set the configuration of a node or of a processing element, or a data word carrying an operand or a result of a calculation. Each processing element performs operations according to its current configuration and returns the results to the communication fabric, which conveys them back to the scratch memory.
Abstract:
An image sensor includes a time-resolving sensor and a processor. The time-resolving sensor outputs a first signal and a second signal pair in response detecting one or more photons that have been reflected from an object. A first ratio of a magnitude of the first signal to a sum of the magnitude of the first signal and a magnitude of the second signal is proportional to a time of flight of the one or more detected photons. A second ratio of the magnitude of the second signal to the sum of the magnitude of the first signal and the magnitude of the second signal is proportional to the time of flight of the one or more detected photons. The processor determines a surface reflectance of the object where the light pulse has been reflected based on the first signal and the second signal pair and may generate a grayscale image.
Abstract:
A neural processor. In some embodiments, the processor includes a first tile, a second tile, a memory, and a bus. The bus may be connected to the memory, the first tile, and the second tile. The first tile may include: a first weight register, a second weight register, an activations buffer, a first multiplier, and a second multiplier. The activations buffer may be configured to include: a first queue connected to the first multiplier and a second queue connected to the second multiplier. The first queue may include a first register and a second register adjacent to the first register, the first register being an output register of the first queue. The first tile may be configured: in a first state: to multiply, in the first multiplier, a first weight by an activation from the output register of the first queue, and in a second state: to multiply, in the first multiplier, the first weight by an activation from the second register of the first queue.
Abstract:
An image sensor includes a time-resolving sensor and a processor. The time-resolving sensor outputs a first signal and a second signal pair in response detecting one or more photons that have been reflected from an object. A first ratio of a magnitude of the first signal to a sum of the magnitude of the first signal and a magnitude of the second signal is proportional to a time of flight of the one or more detected photons. A second ratio of the magnitude of the second signal to the sum of the magnitude of the first signal and the magnitude of the second signal is proportional to the time of flight of the one or more detected photons. The processor determines a surface reflectance of the object where the light pulse has been reflected based on the first signal and the second signal pair and may generate a grayscale image.
Abstract:
A system and a method of quantizing a pre-trained neural network, includes determining by a layer/channel bit-width determiner for each layer or channel of the pre-trained neural network a minimum quantization noise for the layer or the channel for each master bit-width value in a predetermined set of master bit-width values; and selecting by a bit-width selector for the layer or the channel the master bit-width value having the minimum quantization noise for the layer or the channel. In one embodiment, the minimum quantization noise for the layer or the channel is based on a square of a range of weights for the layer or the channel that is multiplied by a constant to a negative power of a current master bit-width value.
Abstract:
A system and a method of quantizing a pre-trained neural network, includes determining by a layer/channel bit-width determiner for each layer or channel of the pre-trained neural network a minimum quantization noise for the layer or the channel for each master bit-width value in a predetermined set of master bit-width values; and selecting by a bit-width selector for the layer or the channel the master bit-width value having the minimum quantization noise for the layer or the channel. In one embodiment, the minimum quantization noise for the layer or the channel is based on a square of a range of weights for the layer or the channel that is multiplied by a constant to a negative power of a current master bit-width value.
Abstract:
An image sensor includes a time-resolving sensor and a processor. The time-resolving sensor outputs a first signal and a second signal pair in response detecting one or more photons that have been reflected from an object. A first ratio of a magnitude of the first signal to a sum of the magnitude of the first signal and a magnitude of the second signal is proportional to a time of flight of the one or more detected photons. A second ratio of the magnitude of the second signal to the sum of the magnitude of the first signal and the magnitude of the second signal is proportional to the time of flight of the one or more detected photons. The processor determines a surface reflectance of the object where the light pulse has been reflected based on the first signal and the second signal pair and may generate a grayscale image.
Abstract:
A data compressor includes a zero-value remover, a zero bit mask generator and a non-zero values packer. The zero-value remover receives 2N bit streams of values and outputs 2N non-zero-value bit streams having zero values removed from each respective bit stream based on a selected granularity of compression for values contained in the bit streams. The zero bit mask generator receives the 2N bit streams of values and generates a zero bit mask corresponding to the selected granularity of compression. Each zero bit mask indicates a location of a zero value based on the selected granularity of compression. The non-zero values packer receives the 2N non-zero-value bit streams and forms at least one first group of packed non-zero values.