Abstract:
A semiconductor memory device includes a body conductive layer that includes a cell array portion and a peripheral circuit portion, an electrode structure on the cell array portion of the body conductive layer, vertical structures that penetrate the electrode structure, a residual substrate on the peripheral circuit portion of the body conductive layer, and a connection conductive pattern penetrating the residual substrate. The electrode structure includes a plurality of electrode that are stacked on top of each other. The vertical structures are connected to the cell array portion of the body conductive layer. The connection conductive pattern is connected to the peripheral circuit portion of the body conductive layer.
Abstract:
A three-dimensional semiconductor device includes an electrode structure on a substrate that includes a first region and a second region, the electrode structure including a ground selection electrode, cell electrodes, and a string selection electrode which are sequentially stacked on the substrate wherein the ground selection electrode, the cell electrodes, and the string selection electrode respectively include a ground selection pad, cell pads, and a string selection pad which define a stepped structure in the second region of the substrate, a plurality of dummy pillars penetrating each of the cell pads and a portion of the electrode structure under each of the cell pads, and a cell contact plug electrically connected to each of the cell pads, wherein each of the dummy pillars penetrates a boundary between adjacent cell pads, and wherein the adjacent cell pads share the dummy pillars.
Abstract:
An image processing device includes a guided image filtering circuit and an image summation circuit. The guided image filtering circuit is configured to receive an input image including a green channel, a red channel and a blue channel, and to generate a corrected red channel and a corrected blue channel by applying a guided filter with respect to the red channel and the blue channel based on the green channel. The image summation circuit is configured to generate an output image by summing the green channel, the corrected red channel, and the corrected blue channel.
Abstract:
In an image processing device, a color transformation circuit is configured to generate a color difference based on a first image of normal exposure and a second image of under exposure. A color fringe detection circuit is configured to detect color fringe in the first image, and to generate color fringe detection information based on the detected color fringe. A weight map formation circuit is configured to generate a weight map based on the color fringe detection information and the color difference. An image fusion circuit is configured to generate a third image, in which the detected color fringe is suppressed, based on the color difference and the weight map.
Abstract:
Provided is a time of flight (ToF) sensor and a method for controlling the ToF sensor. The ToF sensor includes a first light emitter configured to output first light of a first pattern, a second light emitter configured to output second light of a second pattern, an image sensor including a plurality of pixels, and at least one processor configured to control the first light emitter and the second light emitter to sequentially output the first light and the second light, obtain, based on the output first light and second light being received through the image sensor by being reflected by a plurality of objects, a first image frame corresponding to the received first light and a second image frame corresponding to the received second light, and identify distances between the ToF sensor and the plurality of objects based on the first image frame and the second image frame.
Abstract:
A method for using a high bandwidth memory controller includes providing a clock signal having a first clock frequency, providing a write strobe signal having a second clock frequency, providing a write command/address signal based on the clock signal, and providing a write data signal based on the write strobe signal. The first clock frequency is half of the second clock frequency, the write strobe signal has two cycles of pre-amble before the write data signal, and the write strobe signal has two cycles of post-amble after the write data signal.
Abstract:
An electronic device includes: coils; power conversion circuits configured to receive direct current (DC) power, convert the DC power into alternating current (AC) power, and output the AC power to the coils; and a processor. The processor is configured to: apply to the coils a ping signal of which a ping power section is repeated periodically and which has a plurality of ping power levels increasing in phases; confirm an SSP signal responding to the ping signal; and perform wireless power transmission by the coils on the basis of a ping power level in which the SSP signal is confirmed from among the plurality of ping power levels.
Abstract:
A user authentication method and a user authentication apparatus acquire an input image including a frontalized face of a user, calculate a confidence map including confidence values, for authenticating the user, corresponding to pixels with values maintained in a depth image of the frontalized face of the user among pixels included in the input image, extract a second feature vector from a second image generated based on the input image and the confidence map, acquire a first feature vector corresponding to an enrolled image, and perform authentication of the user based on a correlation between the first feature vector and the second feature vector.
Abstract:
A method with image processing includes: generating a first surface normal image comprising surface normal vectors corresponding to pixels of a first depth image; and applying the first depth image and the first surface normal image to a first neural network, and acquiring a second depth image by changing the first depth image using the first neural network. The first neural network generates the second depth image to have an improved quality compared to the first depth image, based on an embedding vector that comprises a feature of the first depth image and a feature of the first surface normal image.
Abstract:
A segmentation method and segmentation apparatus are provided, where the segmentation method includes receiving image frames comprising a current frame and an adjacent frame to the current frame, determining a feature map to aggregate the image frames based on temporal information between the current frame and the adjacent frame, extracting a feature of a region of interest (ROI) corresponding to instances included in the current frame from the feature map, predicting a class of an object corresponding to the ROI based on the feature of the ROI, and segmenting the instances by correcting an amodal mask predicted corresponding to the class of the object based on the feature of the ROI.