Abstract:
Methods and apparatuses are provided for communication between a UE and a Node B in a communication system. The UE receives a control signal including one bit of frequency hopping information, a resource allocation type, a resource allocation, and a cyclic shift for a reference signal from the Node B. It is determined that the frequency hopping information is used as a part of resource allocation information, if the resource allocation type indicates that two sets of resource blocks are allocated. The UE transmits data based on the frequency hopping information, the resource allocation type, and the resource allocation included in the control signal. Each of the resource blocks comprises one or more resource block groups, and a size of each resource block group is determined based on an uplink bandwidth.
Abstract:
Methods and apparatus are provided for a User Equipment (UE) configured to have multiple cells in a DownLink (DL) of a Time Division Duplex (TDD) communication system so as to determine a power of an acknowledgement signal that the UE transmits in a control channel and to determine a number of acknowledgement information bits that the UE multiplexes with data information bits in a data channel. A transmission power of the control signal is determined based on DL Assignment Index (DAI) Information Elements (IEs) in DL Scheduling Assignments (SAs) that the UE detects through multiple transmission time intervals and through the multiple configured DL cells. The number of acknowledgement information bits in the data channel is determined based on a DAI IE of an UpLink (UL) SA associated with the transmission of the data channel.
Abstract:
Methods and apparatuses are provided for transmitting and receiving information. A User Equipment (UE) identifies a sequence based on a Zadoff-Chu sequence and ejα, where a cyclic shift value α is defined per cell. The UE identifies information for an orthogonal sequence. The UE generates a signal by using the information, the sequence and the orthogonal sequence. The UE transmits the signal in a Single Carrier-Frequency Division Multiple Access (SC-FDMA) symbol to a Node B.
Abstract:
Methods and apparatuses are provided for transmitting data. An index of a first resource block is obtained from a scheduling grant. A user equipment determines value related to hopping based on a sequence generated by cell specific information. The user equipment determines a value related to mirroring based on the sequence generated by the cell specific information. The user equipment determines a second resource block for uplink transmission by the index of the first resource block, the value related to hopping, and the value related to mirroring.
Abstract:
Methods and apparatuses are described for the transmission of Scheduling Assignments (SAs) from a base station to User Equipments (UEs) for data reception in the downlink or data transmission in the uplink of a communication system. A method for wireless communication includes receiving a scheduling assignment in a search space on a primary component carrier, the scheduling assignment including information indicating a component carrier on which data is transmitted; and receiving the data on the indicated component carrier. The search space for the primary component carrier is different from a search space for a secondary component carrier.
Abstract:
Methods and apparatus are provided for a User Equipment (UE) configured to have multiple cells in a DownLink (DL) of a Time Division Duplex (TDD) communication system so as to determine a power of an acknowledgement signal that the UE transmits in a control channel and to determine a number of acknowledgement information bits that the UE multiplexes with data information bits in a data channel. A transmission power of the control signal is determined based on DL Assignment Index (DAI) Information Elements (IEs) in DL Scheduling Assignments (SAs) that the UE detects through multiple transmission time intervals and through the multiple configured DL cells. The number of acknowledgement information bits in the data channel is determined based on a DAI IE of an UpLink (UL) SA associated with the transmission of the data channel.
Abstract:
Methods and apparatuses are provided for transmitting control information in an SC-FDMA system. A UE determines cyclic shift values for SC-FDMA symbols. The UE acquires cyclic shift sequences by the cyclic shift values. The UE applies the cyclic shift sequences to the control information on an SC-FDMA symbol basis. The control information applied with the cyclic shift sequences in the SC-FDMA symbols is transmitted to a Node B
Abstract:
A method and apparatus are provided for transmitting a Reference Signal (RS) by a User Equipment (UE) in a wireless communication system. The method includes transmitting a DeModulation Reference Signal (DM RS) and information data in a sub-frame; and transmitting a Sounding Reference Signal (SRS) in a last symbol in another sub-frame. The DM RS is transmitted in a middle symbol in each slot of the sub-frame, and the information data is transmitted in other symbols in each slot of the sub-frame.
Abstract:
Methods are described for a Node B to transmit and for a User Equipment (UE) to receive ACKnowledgement (ACK) information associated with the use of Hybrid Automatic Repeat reQuest (HARM), also known as HARQ-ACK signaling, in a communication system that includes multiple downlink component carriers or multiple uplink component carriers. An HARQ-ACK signal to a UE is in response to a data packet transmission from the UE and may consist of 2 information bits when the UE has 2 or more transmitter antennas. The HARQ-ACK signal is always located in the same downlink component carrier as the scheduling assignment resulting to the data packet transmission from the UE.
Abstract:
A method and apparatus for transmitting information symbols in a communication system are provided. The method includes determining Channel Quality Information (CQI) and acknowledgement information, in response to data reception; generating a first symbol based on the CQI and a second symbol based on the acknowledgement information; and transmitting the first symbol and the second symbol. A first code is applied to the second symbol, when the acknowledgement information is negative, a second code is applied to the second symbol, when the acknowledgement information is positive, and the first code is applied to the second symbol, when the acknowledgement information does not exist.