Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). According to various embodiments, an apparatus of a user equipment (UE) in a wireless environment comprises at least one transceiver; and at least one processor operably coupled to the at least one transceiver. The at least one transceiver is configured to receive a reference signal configuration comprising information for indicating whether a reference signal of a transmission and reception point (TRP) is transmitted through beam sweeping from the TRP, and receive the reference signal from the TRP based on the received reference signal configuration.
Abstract:
The present disclosure relates to a 5G or a pre-5G communication system for supporting a higher data rate since 4G communication systems such as LTE. According to an embodiment of the present disclosure, a method for determining transmission power of a terminal, including: receiving a terminal-specific transmission power parameter from a base station, determining transmission power of the terminal based on the terminal-specific transmission power parameter and a subcarrier spacing allocated to the terminal, and transmitting an uplink signal based on the determined transmission power, and an apparatus performing the same may be provided.
Abstract:
A communication method and system for converging a fifth generation (5G) communication system for supporting higher data rates beyond a fourth generation (4G) system with a technology for Internet of things (IoT) are disclosed. The communication method and system may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method of a terminal for selecting a candidate beam in a wireless communication system is disclosed. The method includes receiving information on a reference signal from a base station, measuring a plurality beams based on the information on the reference signal, and determining at least one candidate beam among the plurality beams, the candidate beam comprising a beam quality above a threshold.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method of a base station (BS) for transmitting a master information block (MIB) in a wireless communication network is provided. The method includes identifying first resources reserved for transmission of a first reference signal (RS) for a first communication using a first frequency bandwidth, identifying second resources reserved for transmission of a second RS for a second communication using a second frequency bandwidth, wherein the second frequency bandwidth is narrower than the first frequency bandwidth, determining third resources for a broadcast channel of the second communication based on the first resources and the second resources, and transmitting the MIB using the third resources via the broadcast channel.
Abstract:
Provided are a method and apparatus for modulating data including a controller. The controller is configured to determine sizes of a first complex-number component and a second complex-number component of input data, and determine a cell to assign a sine wave to the input data, based on a difference between the sizes of the first complex-number component and the second complex-number component.
Abstract:
A communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT) are provided. The communication method and system may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method of a user equipment (UE) for receiving data is provided. The method includes receiving, from a base station, information on radio resources allocated to the UE, and receiving, from the base station, data based on the information on the radio resources. The radio resources are associated with a plurality of symbols in a time domain and a plurality of resource block groups in a frequency domain. The information on the radio resources includes at least one of first information on a starting symbol, or second information on a size of each of the resource block groups.
Abstract:
A communication method and system for converging a 5th-generation (5G) communication system for supporting higher data rates beyond a 4th-generation (4G) system with a technology for Internet of Things (IoT) is provided. The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The method for obtaining numerology information by a user equipment (UE) includes detecting synchronization signals, obtaining first numerology information for the synchronization signals, decoding a physical broadcast channel (PBCH) based on the first numerology information, obtaining second numerology information for a physical downlink control channel (PDCCH) according to a result of the decoding, and receiving control information on the PDCCH based on the second numerology information.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system for supporting a higher data transfer rate beyond a 4G communication system such as LTE. A method for controlling a cell change by a first base station according to an embodiment of the present invention comprises the steps of: generating resource information used for communication between a terminal and a second base station, when the terminal performs a cell change from a first cell corresponding to the first base station to a second cell corresponding to the second base station; and transmitting the resource information to the terminal so that the terminal and the second base station perform a random access procedure.
Abstract:
A communication scheme and system for converging a 5th generation (5G) communication system for supporting a data rate higher than that of a 4th generation (4G) system with an internet of things (IoT) technology, and a method and apparatus therefor are provided. The applicable to intelligent services (e.g., smart home, smart building, smart city, smart car, connected car, health care, digital education, retail, and security and safety-related services) based on the 5G communication technology and the IoT-related technology.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The present disclosure includes an operation method of a terminal in a wireless communication system, the method including checking information on at least one control resource set carrying scheduling information for scheduling remaining system information based on a master information block (MIB) received from a base station, checking the scheduling information in the at least one control resource set, and receiving the remaining system information based on the scheduling information.