Abstract:
A biometric information detecting apparatus includes a bio-signal measurer including a light-emitting unit and a light-receiving unit, the light-emitting unit configured to emit an optical signal and the light-receiving unit configured to detect the optical signal that is modulated by a target object; a low-frequency signal obtainer configured to obtain a low-frequency signal from the bio-signal measured by the bio-signal measurer; and a signal processor configured to analyze biometric information from the bio-signal in response to determining that the low-frequency signal obtained from the bio-signal is within a reference range.
Abstract:
Provided is a biometric state determining method and apparatus. The biometric state determining apparatus may be configured to receive body data and biometric data of a user, and calculate a stress level based on an analysis of the received biometric data. The biometric state determining apparatus may calculate a biometric parameter based on a determined correlation between the calculated stress level and the received body data, and determine a biometric state of the user based on an analysis of the calculated biometric parameter.
Abstract:
There are provided an apparatus and a method for measuring pulse waves. The pulse wave measuring apparatus includes a receiver configured to receive pulse wave signals sensed at at least two points of an object; an analog signal processor configured to amplify a voltage difference between two pulse wave signals from among the received pulse wave signals and integrate the amplified voltage difference; and a digital signal processor configured to analog to digital convert a value of the integrated amplified voltage difference and obtain, from the converted value, a pulse transit time between the two points corresponding to the two pulse wave signals.
Abstract:
A blood pressure estimating method includes measuring a biosignal including pulse wave information of a user, determining a calibration method for a blood pressure estimation model, calibrating the blood pressure estimation model using the determined calibration method, and estimating a blood pressure of the user from the biosignal using the calibrated blood pressure estimation model.
Abstract:
An apparatus for simultaneously detecting surface pressure and blood volume of an object and a method of detecting the same are provided. The apparatus includes a printed circuit board (PCB); a light emitter disposed on the PCB which emits light of a first wavelength and light of a second wavelength; a first light receiver which detects light of the first wavelength and a second light receiver which detects light of the second wavelength; a transparent elastic body on the PCB which covers the light emitter, the first light receiver, and the second light receiver; and a dichroic coating formed on the transparent elastic body. The dichroic coating reflects light of the first wavelength and transmits light of the second wavelength.
Abstract:
Methods and apparatuses for correcting an impedance measured by a sensor included in a wearable device are provided. In an exemplary embodiment, the methods includes: measuring, from an image including the wearable device and arms of a user, a first angle between a straight line connecting a left elbow joint of the user and a camera device for photographing the image and a straight line connecting the left elbow joint and the wearable device, a second angle between a straight line connecting the left elbow joint and the wearable device and a straight line connecting the wearable device and a right elbow joint of the user, a third angle between a straight line connecting the right elbow joint and the wearable device and a straight line connecting the right elbow joint and the camera device, and a fourth angle between a straight line connecting the right elbow joint and the camera device and a straight line connecting the left elbow joint and the camera device.
Abstract:
A blood pressure monitor including a manually operable pressurizer is disclosed. The blood pressure monitor may include a cuff configured to apply a pressure to a target portion of a body of a user, a pressurizer, a depressurizer, and a sensor to measure a blood pressure. The pressurizer may include a rotator, and be configured to supply a fluid to the cuff, to cause the cuff to apply the pressure, through rotation of the rotator caused by an external rotational force applied to the blood pressure monitor to rotate the rotator. The depressurizer may be configured to reduce the applied pressure applied by the cuff to the target portion.
Abstract:
An apparatus and a method of measuring bioinformation are provided. The apparatus for measuring bioinformation includes a first sensor configured to measure a first biosignal including arterial pulse wave information, a second sensor configured to measure a second biosignal including venous or capillary pulse wave information, and a bioinformation estimator configured to estimate bioinformation of a user based on a time delay between the first biosignal and the second biosignal.
Abstract:
An apparatus and a method for detecting bio-information are provided. The apparatus includes a bio-signal detector including a light emitter including a light-emitting diode (LED) and a laser diode (LD), the LED and the LD being configured to emit optical signals on an object. The bio-signal detector further includes an optical detector including a light-receiver configured to detect optical signals modulated by the object. The apparatus further includes a processor configured to process the optical signals to detect the bio-information of the object.
Abstract:
A biometric information measuring device includes a pulse wave measuring module configured to measure pulse waves by emitting light toward a target object and sensing light reflected from the target object; a communication module configured to obtain calibration information from a remote calibration server; and a biometric information analyzing module configured to analyze biometric information based on the measured pulse waves and the calibration information. The calibration information indicates biometric information measurement variables of a plurality of subjects.