Abstract:
A photoelectric conversion device of an image sensor includes a first transparent electrode layer, an active layer, and a second transparent electrode layer, which are sequentially stacked. A light having a wavelength of about 440 nm-480 nm is absorbed within a depth of about ⅕ of an entire thickness of the active layer from both the top and bottom surfaces of the active layer.
Abstract:
A composition for an organic thin film may include a first compound having a linear alkylene oxide moiety and a haloalkyl moiety, and a second compound having conductivity and being capable of controlling a work function.
Abstract:
A sensor embedded display panel includes a substrate, a light emitting element on the substrate and including an emission layer; and a photoelectric element on the substrate. The photoelectric element includes a light absorbing layer. The light absorbing layer at least partially overlaps the emission layer in a horizontal direction extending in parallel to an upper surface of the substrate. The light emitting element and the photoelectric element each include a separate portion of a first common auxiliary layer that extends on tops of the emission layer and the light absorbing layer and a separate portion of a second common auxiliary layer that extends on bottoms of the emission layer and the light absorbing layer. The photoelectric element further includes an auxiliary layer that has a thickness corresponding to one of a red wavelength spectrum, a green wavelength spectrum, or a blue wavelength spectrum.
Abstract:
A composition for a photoelectric device includes a compound represented by Chemical Formula 1, and an image sensor and an electronic device including the same: In Chemical Formula 1, each substituent is the same as defined in the detailed description.
Abstract:
A sensor-embedded display panel includes a substrate, first, second, and third light emitting elements on the substrate, the first, second, and third light emitting elements including separate, respective light emitting layers, and a light absorbing layer on the substrate, the light absorbing layer being in parallel with the light emitting layer along the surface direction of the substrate, wherein the first, second, and third light emitting elements and the light absorption sensor include a first common auxiliary layer that is continuously disposed on the light emitting layers and the light absorbing layer, and a common electrode on the first common auxiliary layer and configured to apply a common voltage to the first, second, and third light emitting elements and the light absorption sensor, and the light absorption sensor includes an n-type semiconductor layer between the light absorbing layer and the first common auxiliary layer and including an n-type semiconductor.
Abstract:
An electronic device includes a display panel and a biometric sensor. The display panel includes a light emitter. The biometric sensor is stacked with the display panel and is configured to detect light emitted from the display panel and reflected by a recognition target that is external to the electronic device. The biometric sensor includes a silicon substrate and a photoelectric conversion element on the silicon substrate. The photoelectric conversion element includes a photoelectric conversion layer having wavelength selectivity.
Abstract:
A composition for a photoelectric device includes a p-type semiconductor compound represented by Chemical Formula 1 and an n-type semiconductor compound, and an image sensor and an electronic device including the same: In Chemical Formula 1, each substituent is the same as defined in the detailed description.
Abstract:
Disclosed are a photoelectric conversion device and an organic sensor and an electronic device including the same. The photoelectric conversion device includes a first and a second electrode, a photoelectric conversion layer between the first and the second electrode and configured to absorb light in at least one portion of a wavelength spectrum and to convert the absorbed light into an electric signal, and a buffer layer between the second electrode and the photoelectric conversion layer and including a mixture of at least two materials. The mixture includes a first and a second material. The first material has an energy bandgap of at least about 3.2 eV and a HOMO energy level of at least about 6.0 eV. The second material has an energy bandgap of less than or equal to about 2.8 eV and a HOMO energy level of at least about 6.0 eV.
Abstract:
An OLED display panel may include a substrate, an OLED light emitter on the substrate and configured to emit light, and a visible light sensor on the substrate and configured to detect at least a portion of the emitted light based on reflection of the portion of the emitted light from a recognition target. The visible light sensor is in a non-light emitting region adjacent to the OLED light emitter so as to be horizontally aligned with the OLED light emitter in a horizontal direction extending parallel to an upper surface of the substrate, or between the substrate and a non-light emitting region adjacent to the OLED light emitter such that the visible light sensor is vertically aligned with the non-light emitting region in a vertical direction extending perpendicular to the upper surface of the substrate.
Abstract:
An image sensor may include a photodiode within a semiconductor substrate and configured to sense light in an infrared wavelength spectrum of light, a photoelectric conversion device on the semiconductor substrate and configured to sense light in a visible wavelength spectrum of light, and a filtering element configured to selectively transmit at least a portion of the infrared wavelength spectrum of light and the visible wavelength spectrum of light. The filtering element may include a plurality of color filters on the photoelectric conversion device. The photoelectric conversion device may include a pair of electrodes facing each other and a photoelectric conversion layer between the pair of electrodes and configured to selectively absorb light in a visible wavelength spectrum of light. The filtering element may be between the semiconductor substrate and the photoelectric conversion device and may selectively absorb the infrared light and selectively transmit the visible light.