Abstract:
An apparatus for simultaneously detecting surface pressure and blood volume of an object and a method of detecting the same are provided. The apparatus includes a printed circuit board (PCB); a light emitter disposed on the PCB which emits light of a first wavelength and light of a second wavelength; a first light receiver which detects light of the first wavelength and a second light receiver which detects light of the second wavelength; a transparent elastic body on the PCB which covers the light emitter, the first light receiver, and the second light receiver; and a dichroic coating formed on the transparent elastic body. The dichroic coating reflects light of the first wavelength and transmits light of the second wavelength.
Abstract:
A portable healthcare device and a method of operating the same are provided. The portable healthcare device detects biometric information of a user; obtains health state information of the user from the biometric information; and projects an image of the health state information, on a projection surface, in parallel with a reference axis, regardless of an orientation angle of the portable healthcare device.
Abstract:
Provided is an apparatus and method for detecting biometric information. The apparatus may include a biometric signal measurer comprising a light-receiving element and a plurality of light-emitting elements; and a processor including a tracking unit configured to sequentially drive the plurality of light-emitting elements, receive a signal detected by the light-receiving element, and determine a tracking line that connects at least two positions of a radial artery of the object from the received signal; and an analyzing unit configured to detect a pulse wave signal at the at least two points on the tracking line and analyze biometric information from the detected pulse wave signal.
Abstract:
An apparatus and method for processing a depth image. A depth image may be generated with reduced noise and motion blur, using depth images generated during different integration times that are generated based on the noise and motion blur of the depth image.
Abstract:
A backlight system includes a backlight and a master driving circuit. The backlight includes a plurality of slave driving circuits and a plurality of light sources driven by the plurality of slave driving circuits, wherein the plurality of slave driving circuits are arranged in a matrix of driving rows and driving columns such that first through m-th slave driving circuits, where m is a positive integer greater than one, are arranged in each driving row of the driving rows, and the first through m-th slave driving circuits are connected in a daisy chain structure. The master driving circuit is configured to generate a plurality of input data signals, wherein each input data signal of the plurality of input data signals corresponds to the each driving row, and the each input data signal includes first through m-th packets including luminance data corresponding to the first through m-th slave driving circuits.
Abstract:
Disclosed is integrated circuit panel which detects fault of a driving circuit. The integrated circuit panel includes: a driving circuit array including first and second driving circuits; a data driver configured to output first and second input data signals through first and second data lines, respectively; a switch driver configured to output a switching signal through a switch line; and an error detection driver configured to receive first and second output data signals through first and second test lines, respectively, wherein, in response to the switching signal, the first and second driving circuits are configured to output the first and second output data signals, which are based on the first and second input data signal, through the first and second test lines, respectively, and the error detection driver is configured to detect a fault of the first or second driving circuit based on the first or second output data signal.
Abstract:
There is provided an image registration device and an image registration method. The device includes: a feature extractor configured to extract, from a first image, a first feature group and to extract, from a second image, a second feature group; a feature converter configured to convert, using a converted neural network in which a correlation between features is learned, the extracted second feature group to correspond to the extracted first feature group, to obtain a converted group; and a register configured to register the first image and the second image based on the converted group and the extracted first feature group.
Abstract:
There is provided an image registration device and an image registration method. The device includes: a feature extractor configured to extract, from a first image, a first feature group and to extract, from a second image, a second feature group; a feature converter configured to convert, using a converted neural network in which a correlation between features is learned, the extracted second feature group to correspond to the extracted first feature group, to obtain a converted group; and a register configured to register the first image and the second image based on the converted group and the extracted first feature group.
Abstract:
Provided is an apparatus for analyzing living body information including: a plurality of pulse wave sensors configured to detect a pulse wave signal of an object and disposed on a rear surface of the apparatus; a processor configured to analyze living body information of the object based on the detected pulse wave signal; and a display configured to display the analyzed living body information and disposed on a front surface of the apparatus.
Abstract:
A touch panel apparatus and a method are provided. The touch panel apparatus includes a touch panel, a pulse sensor, and a processor. The touch panel detects a heartbeat-based signal from a first part of a target body. The pulse sensor detects a pulse signal from a second part of the target body. The processor acquires a pulse transit time (PTT) based on the detected heartbeat-based signal and the detected pulse signal. The touch panel apparatus contemporaneously detects the heartbeat-based signal and the pulse signal using the touch panel and the pulse sensor, respectively.