Abstract:
A method and an apparatus method are provided for transmitting uplink information including acknowledgement information in a wireless communication system. The method includes coding uplink data and the acknowledgement information by using different coding schemes respectively; multiplexing the coded uplink data and the coded acknowledgement information into the uplink information; and transmitting the uplink information using resources, wherein some of the uplink data is transmitted based on a first resource and the acknowledgment information is transmitted based on a second resource, and wherein the first and second resources are adjacent to each other with respect to a time domain.
Abstract:
A method and apparatus are provided for allocating code resources to ACK/NACK channel indexes, when UEs need ACK/NACK transmission in a wireless communication system in which a predetermined number of orthogonal cover Walsh codes is selected from among available orthogonal cover Walsh codes, at least one subset is formed, having the selected orthogonal cover Walsh codes arranged in an ascending order of cross interference, subsets are selected for use in first and second slots of a subframe, and the orthogonal cover Walsh codes of the subset selected for each slot and ZC sequence cyclic shift values are allocated to the ACK/NACK channel indexes.
Abstract:
Disclosed are: a communication technique for fusing, with IoT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4 G system and subsequent systems; and a system thereof. The present disclosure can be applied to an intelligent service (for example, smart home, smart building, smart city, smart car or connected car, health care, digital education, retail business, security and safety-related service and the like) based on 5G communication technology and IoT related technology. The present disclosure presents a method by which a base station determines the approximate location of a terminal on the basis of a reception power report, and sets a codebook subset on the basis of the approximate location of the terminal so as to reduce a channel state report burden.
Abstract:
Methods and apparatus are provided for receiving a physical downlink control channel in a wireless communication system. The physical downlink control channel is received. The physical downlink control channel is decoded. A scheduling type is determined using scheduling type information in the physical downlink control channel. Scheduling information is determined for a data channel according to the scheduling type.
Abstract:
An apparatus and a method for generation of channel state information in a wireless communication system are provided. The method includes transmitting, by an evolved Node B (eNB), a first reference signal to a plurality of User Equipments (UEs), receiving channel state information generated based on the first reference signal from the plurality of UEs, selecting candidate UEs to which wireless resources are to be allocated and transmitting second reference signals to the selected candidate UEs, receiving channel state information generated based on the second reference signals from the candidate UEs, and selecting final UEs, to which wireless resources are to be allocated, from the candidate UEs based on the channel state information generated based on the second reference signals, and transmitting control information for data reception to the selected final UEs.
Abstract:
Methods and apparatuses are provided for communication between a UE and a node B in a communication system. The UE generates a media access control protocol data unit (MAC PDU) comprising at least one media access control service data unit (MAC SDU) and at least one field related to an amount of data. Each of the at least one field related to the amount of data corresponds to a respective identifier, and the at least one field related to the amount of data is placed prior to the at least one MAC SDU in the MAC PDU. The MAC PDU comprising the at least one MAC SDU and the at least one field related to the amount of data is transmitted to the node B. Grant information is received from the node B. Data is transmitted to the node B based on the grant information.
Abstract:
A method for configuring gain factors in a WCDMA telecommunication system is provided in which the gain factor for defining power required for normal reception of uplink data in an environment supporting an uplink service over an E-DCH can be configured using minimal signaling information. First gain factors for first TFs corresponding to a part of a TF set including a plurality of TFs available for an uplink service are received. One of the first TFs is determined as a reference TF for a second TF other than the first TFs in the TF set. Then, a second gain factor for the second TF is calculated using the first gain factor for the determined reference TF. The second gain factor is used for transmitting or receiving uplink data.
Abstract:
An apparatus and a method are provided for operating HARQ in a mobile communication system. The method includes receiving a number of HARQ processes of a semi-persistent resource allocation and semi-persistent resource allocation interval information for a first transmission; receiving data in the first transmission at a subframe based on the semi-persistent resource allocation interval information; calculating a HARQ process IDentifier (ID) using the number of HARQ processes of the semi-persistent resource allocation, the semi-persistent resource allocation interval information, and time information; receiving control information including the HARQ process ID on an L1 control channel; receiving data in a retransmission based on the control information including the HARQ process ID; combining the data received in the first transmission and the data received in the retransmission; and decoding the combined data.
Abstract:
Methods and apparatuses are provided for communication between a user equipment (UE) and a node B in a communication system. The UE generates a media access control protocol data unit (MAC PDU) including at least one field related to an amount of data, if the data becomes available for transmission. The MAC-PDU including the at least one field related to the amount of data is transmitted to the node B. Grant information is received from the node B. The data is transmitted to the Node B based on the grant information. Each of the at least one field related to the amount of data corresponds to a respective identifier.
Abstract:
An apparatus and method are provided for a mobile communication system. The method includes receiving a signal; determining location information of symbol groups; and acquiring the symbol groups, to which an orthogonal sequence is applied, from the signal, based on the location information. The symbol groups are mapped to orthogonal frequency division multiple (OFDM) symbols and multiple antennas based on a symbol group index and a physical HARQ indicator channel (PHICH) group index, and the symbol groups are mapped to the OFDM symbols and the multiple antennas in an alternating pattern in accordance with the symbol group index.