Abstract:
It aims to provide a heavy duty pneumatic tire with block patterns and capable of improving deflected wear resisting performances without sacrificing wet grip performances or on-snow performances and that can particularly be favorably used for all seasons. The present invention comprises block patterns employing at least three types of blocks 4 comprised of central blocks 4C delimited by the central longitudinal groove 2M, the intermediate longitudinal grooves 2M, and the central lateral grooves 3C, intermediate blocks 4M delimited by the intermediate longitudinal grooves 2M, the outer longitudinal grooves 2S and the intermediate lateral grooves 3M, and outer blocks 4S that are delimited by outer longitudinal grooves 2S, outer lateral grooves 3S that extend from this outer longitudinal grooves 2S to the tread ends E, and wherein longitudinal length ratios (L4/W4) of blocks 4, groove width ratios of longitudinal grooves and lateral grooves (w2/w3), maximum widths of blocks, minimum widths of blocks and ratios thereof (W4max/W4min), and circumferential edge components and tire axial edge components and ratios thereof (EC/EL) at respective stages of wear are defined to be within specified ranges.
Abstract:
A heavy duty tire comprises a pair of axially outermost circumferential rows of shoulder blocks, each of the shoulder blocks provided with a circumferentially extending narrow groove, the narrow groove subdividing the shoulder block into an axially inner wide main part and an axially outer narrow lateral part, and the narrow groove is curved convexly so that the narrow lateral part is narrower in a middle region than both the circumferential end regions, whereby the heel and toe wear and shoulder wear and resistance to tear-off can be improved.
Abstract:
A pneumatic tire comprises a tread portion which is provided with a plurality of circumferential grooves extending continuously in the tire circumferential direction to axially divide the tread portion into a plurality of land portions, at least one of the land portions is provided with sipes each extending across the full width of the land portion to have a pair of open ends, each of the sipes is provided therein with at least three tie-bars to provide the bottom of the sip with at least three shallow parts in the open ends and therebetween and at least two deep parts between the shallower parts, and the depth (h2) at the shallow parts is set in the range of from 0.2 to 0.8 times the depth (h1) at the deep parts.
Abstract:
Disclosed is a roller hemming device capable of maintaining performance to hem a work at low cost. Specifically disclosed is a roller hemming device for performing preliminary bending to a work placed on a bottom die along a guide surface formed on the bottom die, which includes a roller for hemming the work, and a guide member protruding radially outward from the outer circumferential surface of the roller. The guide member is in contact with the guide surface of the bottom die during the preliminary bending.
Abstract:
It aims to provide a heavy duty pneumatic tire with block patterns and capable of improving deflected wear resisting performances without sacrificing wet grip performances or on-snow performances and that can particularly be favorably used for all seasons. The present invention comprises block patterns employing at least three types of blocks 4 comprised of central blocks 4C delimited by the central longitudinal groove 2M, the intermediate longitudinal grooves 2M, and the central lateral grooves 3C, intermediate blocks 4M delimited by the intermediate longitudinal grooves 2M, the outer longitudinal grooves 2S and the intermediate lateral grooves 3M, and outer blocks 4S that are delimited by outer longitudinal grooves 2S, outer lateral grooves 3S that extend from this outer longitudinal grooves 2S to the tread ends E, and wherein longitudinal length ratios (L4/W4) of blocks 4, groove width ratios of longitudinal grooves and lateral grooves (w2/w3), maximum widths of blocks, minimum widths of blocks and ratios thereof (W4max/W4min), and circumferential edge components and tire axial edge components and ratios thereof (EC/EL) at respective stages of wear are defined to be within specified ranges.
Abstract:
A sheet feeding apparatus includes a sheet accommodating unit which is detachably attached to an apparatus main body and configured to accommodate sheets, a sheet stacking unit which is provided in the sheet accommodating unit and can move while supporting the sheet, a sheet feeding unit configured to feed the sheet stacked on the sheet stacking unit, and a lift unit configured to move the sheet stacking unit toward the sheet feeding unit, wherein, before feeding of the sheet stacked on the sheet stacking unit by the sheet feeding unit, the lift unit increases and then reduces press contact force between the sheet stacked on the sheet stacking unit and the sheet feeding unit.
Abstract:
A sheet feeding apparatus includes a sheet accommodating unit which is detachably attached to an apparatus main body and configured to accommodate sheets, a sheet stacking unit which is provided in the sheet accommodating unit and can move while supporting the sheet, a sheet feeding unit configured to feed the sheet stacked on the sheet stacking unit, and a lift unit configured to move the sheet stacking unit toward the sheet feeding unit, wherein, before feeding of the sheet stacked on the sheet stacking unit by the sheet feeding unit, the lift unit increases and then reduces press contact force between the sheet stacked on the sheet stacking unit and the sheet feeding unit.
Abstract:
A heavy duty tire has a tread portion 2 which is divided into five inner, intermediate and outer rib-like land portions R1, R2, R2, R3 and R3. The inner rib-like land portion R1 is virtudally divided into half regions R1a and R1a on each side of a tire equator. The intermediate rib-like land portions R2 and R3 are virtually divided into tire equator-side half regions R2c and R3c, and into ground-contact edge-side half regions R2e and R3e. In a regular ground-contact state in which a normal load is applied, when total sums of ground-contact load applied to the half regions R1a, R2c, R2e, R3c and R3e are defined as P1a, P2c, P2e, P3c and P3e, P2c/P1a is set to 0.9 to 1.05, P2e/P2c is set to 0.75 to 1.0, P3c/P2e is set to 0.9 to 1.2, and P3e/P3c is set to 0.8 to 1.1.
Abstract:
A pneumatic tire comprises a tread portion provided with a longitudinal main groove extending continuously in the tire circumferential direction and axial grooves each having at least one opening into the longitudinal main groove, and at least one of two groove walls of each of the axial grooves swells gradually towards the opening. The axial grooves include a groove having two openings and/or a groove having one opening and one closed end. The swelling part of the groove wall can be formed by a convexly curved surface extending from the tread surface towards the groove bottom, and having a single radius of curvature gradually decreasing towards the opening.
Abstract:
A sheet feeding apparatus includes a sheet accommodating unit which is detachably attached to an apparatus main body and configured to accommodate sheets, a sheet stacking unit which is provided in the sheet accommodating unit and can move while supporting the sheet, a sheet feeding unit configured to feed the sheet stacked on the sheet stacking unit, and a lift unit configured to move the sheet stacking unit toward the sheet feeding unit, wherein, before feeding of the sheet stacked on the sheet stacking unit by the sheet feeding unit, the lift unit increases and then reduces press contact force between the sheet stacked on the sheet stacking unit and the sheet feeding unit.