Abstract:
Disclosed is a method for the production of a tube having, in sections, a non-circular profile by deforming, comprising: a) providing a tube, which has a circular initial profile; b) conveying the tube in a hot, malleable state through a nip, which is formed by squeezing rollers and has a first nip width, which is larger than or equal to an outer dimension of the initial profile; c) adjusting the squeezing rollers for setting a second nip width, which is smaller than the outer dimension of the initial profile, and deforming the initial profile in said hot, malleable state for obtaining said non-circular cross section; and d) adjusting the squeezing rollers for setting a third nip width, which is larger than or equal to the outer dimension of the initial profile, and severing said tube in a region having a circular cross section; so that respective end portions of said tube have a circular cross section According to the invention, the tubes can be connected reliably with connecting-members or other tubes via the end portions having the circular profile using proven tube connection technologies. At the same time there is at least one central section having a non-circular cross section which is of advantage, for example for applications in photobioreactors.
Abstract:
The present disclosure provides the installation of an apparatus for cooling a manufactured glass rod. The apparatus has at least two cooling chambers arranged along the glass strand for sectional cooling of the glass strand. A gaseous cooling medium is either blown into the cooling chamber or sucked out of the cooling chambers. The glass strand is passed through each cooling chamber, with an orifice provided at each of the pass-through points, whose opening is larger than the cross-section or diameter of the glass strand. As a result, an annular gap forms between the opening and the surface of the glass strand, so that a turbulent flow of the gaseous cooling medium is generated, which enables a high cooling rate.
Abstract:
Disclosed is a method for the production of a tube having, in sections, a non-circular profile by deforming, comprising: a) providing a tube, which has a circular initial profile; b) conveying the tube in a hot, malleable state through a nip, which is formed by squeezing rollers and has a first nip width, which is larger than or equal to an outer dimension of the initial profile; c) adjusting the squeezing rollers for setting a second nip width, which is smaller than the outer dimension of the initial profile, and deforming the initial profile in said hot, malleable state for obtaining said non-circular cross section; and d) adjusting the squeezing rollers for setting a third nip width, which is larger than or equal to the outer dimension of the initial profile, and severing said tube in a region having a circular cross section; so that respective end portions of said tube have a circular cross section According to the invention, the tubes can be connected reliably with connecting-members or other tubes via the end portions having the circular profile using proven tube connection technologies. At the same time there is at least one central section having a non-circular cross section which is of advantage, for example for applications in photobioreactors.
Abstract:
A glass tube element having a hollow cylindrical section with a shell having an outer diameter is provided. A first ratio is a difference value to a mean value. The difference value is a difference of a minimal and maximal value of the outer diameter. The mean value is a mean of the minimal and maximal values. A sub-section having a start, an end, and a distance of 1 meter measured along a straight line from the start to the end and intersecting with a center axis of the sub-section at the start and the end. The sub-section having, for every point of the center axis, a shortest distance to the straight line. A second ratio of a specific distance to 1 meter, the specific distance being defined as a largest of all shortest distances. A product of the first and second ratio is smaller than 4×10−6.
Abstract:
A glass tube has a center axis, where for the glass tube a specific cross-sectional plane is defined which includes the center axis and which is parallel to the center axis. Within the specific cross-sectional plane, for each pair of outer diameters d1 and d2 of the glass tube at any two arbitrarily selected first axial position x1 and second axial positions x2 along the center axis, respectively, the following relation is 60 or smaller: |(d2−d1)/(x2−x1)|*(10{circumflex over ( )}6 mm)/d1.
Abstract:
An apparatus for forming glass tubes is provided. The apparatus includes a Danner-pipe, a heating device, and a heating chamber having the Danner-pipe and the heating device arranged therein. The Danner-pipe is inclined with respect to a horizontal plane by a Danner-angle. The heating device is inclined with respect to the horizontal plane by a heating-angle. The Danner-angle and/or the heating angle are in a range of 1° to 45°.
Abstract:
An inlay for a sleeve shaft for collecting particles originating from a material of the sleeve shaft at least in part, at least one fluid being flowable through the sleeve shaft along an axial direction which is parallel to a main extension of the sleeve shaft, the inlay includes at least one first wall section and the inlay is inserted or insertable at least in part into the sleeve shaft such that at least one part of the first wall section has a radial distance from at least one first area of an inner surface of the sleeve shaft, and, hence, that the inlay together with the first area of the inner surface of the sleeve shaft encloses at least one volume domain, which volume domain is limited in the axial direction by a limiting element.
Abstract:
A glass tube element having hollow cylindrical section that has a shell enclosing a lumen and extends along a main extension and an optical delay of a light ray. The shell has a surface facing away from the lumen. The optical delay has values that all fall within a range having a size of between 3 and 30 nm. The optical delay being an optical measurement of the glass tube element by the light ray extending along a measurement path in a direction of perpendicular to the main extension and tangent to a surface of the shell. The measurement path touches the surface for different measurements at different positions each having a different azimuth angle within a cylindrical coordinate system fixedly attached to the glass tube element and having an origin on a center axis of the glass tube element.
Abstract:
A glass tube element is provided that includes hollow cylindrical section that has a shell enclosing a lumen and a path extending on a surface of the shell facing away from the lumen. The path extends across a first area of the shell where the stress values are within a first interval. The path also extends across a second area of the shell where the stress values are within a second interval.
Abstract:
At least one glass tube has an azimuthal wall thickness deviation WTD of not more than 6.0%, the azimuthal wall thickness deviation being determined based on a lowest wall thickness value and a highest wall thickness value measured within a cross-section of the at least one glass tube, the azimuthal wall thickness deviation WTD being calculated according to the following formula: W T D = 100 - ( lowest wall thickness value highest wall thickness value * 100 ) % .