Abstract:
A near field transducer with a peg region, an enlarged region disposed adjacent the peg region, and a barrier material disposed between the peg region and the enlarged region. The barrier material reduces or eliminates interdiffusion of material between the peg region and the enlarged region.
Abstract:
An apparatus includes a laser diode, a heater arrangement, and a circuit. The laser diode is configured to facilitate heat assisted magnetic recording during a lasing state. The heater arrangement is positioned proximate the laser diode. The circuit electrically couples the laser diode and the heater arrangement in a parallel relationship. The circuit is configured to alternately operate the laser diode in a lasing state and a non-lasing state, and to activate the heater arrangement during the non-lasing state to warm a junction of the laser diode.
Abstract:
A near field transducer with a peg region, an enlarged region disposed adjacent the peg region, and a barrier material disposed between the peg region and the enlarged region. The barrier material reduces or eliminates interdiffusion of material between the peg region and the enlarged region.
Abstract:
An apparatus is includes a near field transducer positioned adjacent a media-facing surface and at the end of a waveguide having at least one core layer and a cladding layer. The apparatus also includes at least one optical reflector positioned adjacent opposing cross-track edges of the near field transducer and/or adjacent a down-track side of the near-field transducer.
Abstract:
A write pole of a heat assisted magnetic recording (HAMR) write head includes a high moment magnetic material that extends from the write head toward an air barrier surface (ABS) of the write head. At least one stop layer is provided on or within the high moment magnetic material. The stop layer is situated at or near the ABS and is of a corrosion-resistant material.
Abstract:
An apparatus comprises a slider configured to facilitate heat assisted magnetic recording and a submount affixed to the slider. A laser unit is affixed to the submount and comprises a laser operable in a non-lasing state and a lasing state. A heater is embedded in the laser unit or the submount. The heater is configured to generate preheat for heating the laser during the non-lasing state and to generate steering heat for heating the laser during the lasing state.
Abstract:
An apparatus comprises a slider configured to facilitate heat assisted magnetic recording and a submount affixed to the slider. A laser unit is affixed to the submount and comprises a laser operable in a non-lasing state and a lasing state. A heater is embedded in the laser unit or the submount. The heater is configured to generate preheat for heating the laser during the non-lasing state and to generate steering heat for heating the laser during the lasing state.
Abstract:
A method and apparatus provide for determining a temperature at a junction of a laser diode when the laser diode is operated in a lasing state that facilitates heat-assisted magnetic recording, comparing the junction temperature and an injection current supplied during the lasing state to stored combinations of junction temperature and injection current, and determining a likelihood of mode hopping occurring for the laser diode during the lasing state based on the comparison to stored combinations of junction temperature and injection current.
Abstract:
An apparatus comprises a slider configured to facilitate heat assisted magnetic recording and a submount affixed to the slider. A laser unit is affixed to the submount and comprises a laser operable in a non-lasing state and a lasing state. A heater is embedded in the laser unit or the submount. The heater is configured to generate preheat for heating the laser during the non-lasing state and to generate steering heat for heating the laser during the lasing state.
Abstract:
A slider comprises an air bearing surface (ABS) and is configured to interact with a magnetic recording medium. A writer is provided on the slider and comprises a write coil having a media-facing surface situated at the ABS. Cooling arms project laterally from peripheral surfaces of the write coil and extend along the ABS. The media-facing surface of the write coil and the cooling arms are exposed to the ABS to facilitate increased cooling of the write coil at the ABS.