Abstract:
Devices that have an air bearing surface (ABS), the device includes a near field transducer (NFT) that includes a disc configured to convert photons incident thereon into plasmons; and a peg configured to couple plasmons coupled from the disc into an adjacent magnetic storage medium, wherein the disc includes a disc material that includes gold or an alloy thereof and the peg includes a peg material, wherein the disc material is different from the peg material and wherein the peg material has a real part of the permittivity that is not greater than that of gold.
Abstract:
The embodiments disclose a plasmonic cladding structure including at least one conformal plasmonic cladding structure wrapped around plural stack features of a recording device, wherein the conformal plasmonic cladding structure is configured to create a near-field transducer in close proximity to a recording head of the recording device, at least one conformal plasmonic cladding structure with substantially removed top surfaces of the stack features with exposed magnetic layer materials and a thermally insulating filler configured to be located between the stack features.
Abstract:
A magnetic device including: a magnetic reader; a magnetic writer; and a variable overcoat, the variable overcoat positioned over at least the magnetic reader and writer, the variable overcoat having an overcoat layer, the overcoat layer having a substantially constant thickness and material; and at least one disparate overcoat portion, the disparate overcoat portion having a different thickness, a different material, or both, than the overcoat layer.
Abstract:
A heat-assisted magnetic recording head includes a near-field transducer (NFT). The NFT includes a near-field emitter configured to heat a surface of a magnetic disk, and a plasmonic disk. The plasmonic disk is coupled to the near-field emitter and includes rhodium or iridium.
Abstract:
Devices that have an air bearing surface (ABS), the device includes a near field transducer (NFT) that includes a disc configured to convert photons incident thereon into plasmons; and a peg configured to couple plasmons coupled from the disc into an adjacent magnetic storage medium, wherein the disc includes a disc material that includes gold or an alloy thereof and the peg includes a peg material, wherein the disc material is different from the peg material and wherein the peg material has a real part of the permittivity that is not greater than that of gold.
Abstract:
A magnetic device including: a magnetic reader; a magnetic writer; and a variable overcoat, the variable overcoat positioned over at least the magnetic reader and writer, the variable overcoat having an overcoat layer, the overcoat layer having a substantially constant thickness and material; and at least one disparate overcoat portion, the disparate overcoat portion having a different thickness, a different material, or both, than the overcoat layer.
Abstract:
A magnetic device including: a magnetic reader; a magnetic writer; and a variable overcoat, the variable overcoat positioned over at least the magnetic reader and writer, the variable overcoat having an overcoat layer, the overcoat layer having a substantially constant thickness and material; and at least one disparate overcoat portion, the disparate overcoat portion having a different thickness, a different material, or both, than the overcoat layer.
Abstract:
The embodiments disclose a stack feature of a stack configured to confine optical fields within and to a patterned plasmonic underlayer in the stack configured to guide light from a light source to regulate optical coupling.
Abstract:
A heat-assisted magnetic recording head comprises a near-field transducer (NFT). The NFT comprises a near-field emitter configured to heat a surface of a magnetic disk, and a hybrid plasmonic disk. The hybrid plasmonic disk comprises a plasmonic region and a thermal region. The plasmonic region comprises a first material or alloy that is a plasmonic material or alloy. The thermal region comprises a second material or alloy that is different than the first material or alloy.
Abstract:
Devices having air bearing surfaces (ABS), the devices include a near field transducer (NFT) that includes a disc configured to convert photons incident thereon into plasmons; and a peg configured to couple plasmons coupled from the disc into an adjacent magnetic storage medium, wherein the disc includes a disc material and the peg includes a peg material, wherein the disc material is different from the peg material and wherein the disc material has a first real part of the permittivity and a peg material has a second real part of the permittivity and the second real part of the permittivity is not greater than the first real part of the permittivity.