Abstract:
An apparatus comprises a slider having an air-bearing surface (ABS), a write pole at or near the ABS, and a reader at or near the ABS and connected to a pair of reader bond pads of the slider. A near-field transducer (NFT) is formed on the slider at or near the ABS, and an optical waveguide is formed in the slider and configured to receive light from a laser source. A sensor is situated proximal of the write pole at a location within the slider that receives at least some of the light communicated along the waveguide. The sensor may be electrically coupled to the reader bond pads in parallel with the reader, and configured to generate a signal indicative of output optical power of the laser source.
Abstract:
An apparatus comprises a slider having an air-bearing surface (ABS), a write pole at or near the ABS, and a reader at or near the ABS and connected to a pair of reader bond pads of the slider. A near-field transducer (NFT) is formed on the slider at or near the ABS, and an optical waveguide is formed in the slider and configured to receive light from a laser source. A sensor is situated proximal of the write pole at a location within the slider that receives at least some of the light communicated along the waveguide. The sensor may be electrically coupled to the reader bond pads in parallel with the reader, and configured to generate a signal indicative of output optical power of the laser source.
Abstract:
An external cavity laser of a recording head includes a channel waveguide that delivers light towards a media-facing surface of the recording head. The laser includes an externally mounted part with an active region having a longitudinal axis corresponding to a light propagation direction of the channel waveguide. The externally mounted part has a reflective back facet and anti-reflective front facet. The laser includes a near-field transducer at an end of the channel waveguide proximate the media facing surface. The reflective back facet and the near-field transducer define a resonator of the external cavity laser.
Abstract:
A recording head comprises a write pole extending to an air-bearing surface. A near-field transducer is positioned proximate a first side of the write pole in a down-track direction. A heatsink structure is proximate the near-field transducer and positioned between the near-field transducer and the write pole. The heatsink structure extends beyond the near-field transducer in a cross-track direction and extends in a direction normal to the air-bearing surface.
Abstract:
An apparatus comprises a light source configured to generate light, and a modulator coupled to the light source and configured to modulate the light above a predetermined frequency. A slider is configured for heat-assisted magnetic recording and to receive the modulated light. A resistive sensor is integral to the slider and subject to heating by absorption of electromagnetic radiation and conduction of heat. Measuring circuitry is coupled to the resistive sensor and configured to measure a response of the resistive sensor due to absorbed electromagnetic radiation and not from the heat conduction. The measuring circuitry may further be configured to determine output optical power of the light source using the measured resistive sensor response.
Abstract:
An apparatus comprises a slider having an air bearing surface (ABS) and a near-field transducer (NFT) at or near the ABS. An optical waveguide is configured to couple light from a laser source to the NFT. A resistive sensor comprises an ABS section situated at or proximate the ABS and a distal section extending away from the ABS to a location at least lateral of or behind the NFT. The resistive sensor is configured to detect changes in output optical power of the laser source and contact between the slider and a magnetic recording medium.
Abstract:
A near-field transducer includes first and second stacked base portions having a common outline shape. The second base portion is proximate alight delivery structure. A peg extends from the first base portion towards a media-facing surface. The peg includes a material that is more thermally robust than a plasmonic material of the base portion. The peg has a peg thickness that is less than a thickness of the first base portion. The first base portion has a first recess proximate the peg. The first recess separates the first base portion from the media-facing surface and exposes at least a top side of the peg.
Abstract:
A recording head includes an external cavity laser with an externally mounted part having an active region. The external cavity laser also includes a channel waveguide that delivers light towards a media-facing surface. A near-field transducer functions as a reflector, either alone or in combination with a Bragg grating in the channel waveguide. A reflective back facet of the externally mounted part and the reflector define a resonator of the external cavity laser.
Abstract:
A recording head comprises a write pole extending to an air-bearing surface. A near-field transducer is positioned proximate a first side of the write pole in a down-track direction. A heatsink structure is proximate the near-field transducer and positioned between the near-field transducer and the write pole. The heatsink structure extends beyond the near-field transducer in a cross-track direction and extends in a direction normal to the air-bearing surface.
Abstract:
An apparatus comprises a light source configured to generate light, and a modulator coupled to the light source and configured to modulate the light above a predetermined frequency. A slider is configured for heat-assisted magnetic recording and to receive the modulated light. A resistive sensor is integral to the slider and subject to heating by absorption of electromagnetic radiation and conduction of heat. Measuring circuitry is coupled to the resistive sensor and configured to measure a response of the resistive sensor due to absorbed electromagnetic radiation and not from the heat conduction. The measuring circuitry may further be configured to determine output optical power of the light source using the measured resistive sensor response.