Abstract:
A head transducer includes a thermal sensor comprising a conducting ceramic material having a temperature coefficient of resistance. The thermal sensor can comprise a transparent conducting oxide having a temperature coefficient of resistance. The thermal sensor can be situated proximate a near-field transducer of the heat-assisted magnetic recording head transducer.
Abstract:
A system for poling piezoelectric devices comprises a plurality of thin-film components, a plurality of piezoelectric devices, a poling pad for poling the piezoelectric devices, a plurality of traces, and a plurality of current-limiting elements. The thin-film components are separated by dice lanes to form an array, and the piezoelectric devices are formed on the thin-film components. The traces connect the piezoelectric devices across the dice lanes in parallel to the poling pad. Each current-limiting element is connected in series with one of the piezoelectric devices, in order to limit current to individual piezoelectric devices that experience current-related failure.
Abstract:
A recording head includes a near-field transducer proximate a media-facing surface. The near-field transducer comprises an aperture portion surrounded by walls of plasmonic material, the walls oriented normal to the media-facing surface. A notch protrudes within the aperture. The notch comprises at least one of Rh and Ir. A write pole is proximate the near-field transducer. The write pole has a back surface facing away from the media-facing surface and an aperture-facing surface proximate the aperture.
Abstract:
A recording head includes a near-field transducer proximate a media-facing surface. The near-field transducer comprises an aperture portion surrounded by walls of plasmonic material, the walls oriented normal to the media-facing surface. A notch protrudes within the aperture. The notch comprises at least one of Rh and Ir. A write pole is proximate the near-field transducer. The write pole has a back surface facing away from the media-facing surface and an aperture-facing surface proximate the aperture.
Abstract:
A near-field transducer includes first and second stacked base portions having a common outline shape. The second base portion is proximate alight delivery structure. A peg extends from the first base portion towards a media-facing surface. The peg includes a material that is more thermally robust than a plasmonic material of the base portion. The peg has a peg thickness that is less than a thickness of the first base portion. The first base portion has a first recess proximate the peg. The first recess separates the first base portion from the media-facing surface and exposes at least a top side of the peg.
Abstract:
A magnetoresistive data writer and reader may be generally configured at least with a magnetoresistive (MR) element contacting a magnetic shield that is contrasted of (Ni78Fe22)99.8O0.2 material. The magnetic shield may be formed with an electrodeposition process that uses β-diketones derivatives to form nano-crystalline grain structure after a subsequent annealing at temperatures above 400° C.
Abstract:
An apparatus includes a near field transducer positioned adjacent to an air bearing surface, a first magnetic pole, a heat sink positioned between the first magnetic pole and the near field transducer, and a diffusion barrier positioned between the near field transducer and the first magnetic pole. The diffusion barrier can be positioned adjacent to the magnetic pole or the near field transducer.
Abstract:
An apparatus including a near field transducer positioned adjacent to an air bearing surface, the near field transducer comprising silver (Ag) and at least one other element or compound; a first magnetic pole; and a heat sink positioned between the first magnetic pole and the near field transducer, wherein the heat sink includes: rhodium (Rh) or an alloy thereof; ruthenium (Ru) or an alloy thereof; titanium (Ti) or an alloy thereof; tantalum (Ta) or an alloy thereof; tungsten (W) or an alloy thereof; borides; nitrides; transition metal oxides; or palladium (Pd) or an alloy thereof.
Abstract:
A waveguide including a first cladding layer, the first cladding layer having an index of refraction, n3; an assist layer, the assist layer having an index of refraction, n2, and the assist layer including ASixOy, wherein A is selected from: Ta, Ti, Nb, Hf, Zr, and Y, x is from about 0.5 to about 2.0, y is from about 3.5 to about 6.5, and the atomic ratio of A/A+Si in ASixOy is from about 0.2 to about 0.7; and a core layer, the core layer including a material having an index of refraction, n1, wherein n1 is greater than n2 and n3, and n2 is greater than n3.
Abstract translation:包括第一包层的波导,所述第一包层具有折射率n3; 辅助层,辅助层具有折射率n2,辅助层包括ASixOy,其中A选自:Ta,Ti,Nb,Hf,Zr和Y,x为约0.5至约2.0, y为约3.5至约6.5,并且ASixOy中的A / A + Si的原子比为约0.2至约0.7; 芯层,芯层包括具有折射率n1的材料,其中n1大于n2和n3,n2大于n3。