Abstract:
A display device having a function of detecting an object that is in contact with or approaches a display portion is provided. The display device includes a light-emitting element and a light-receiving element. The light-emitting element includes a first pixel electrode, a first functional layer, a light-emitting layer, a common layer, and a common electrode. The light-receiving element includes a second pixel electrode, a second functional layer, a light-receiving layer, the common layer, and the common electrode. The first functional layer includes one of a hole-injection layer and an electron-injection layer. The second functional layer includes one of a hole-transport layer and an electron-transport layer. The common layer has a function of the other of the hole-injection layer and the electron-injection layer in the light-emitting element and has a function of the other of the hole-transport layer and the electron-transport layer in the light-receiving element.
Abstract:
A display apparatus having a light detection function is provided. The display apparatus includes a first pixel and a second pixel. The first pixel includes a first subpixel and a second subpixel. The second pixel includes a third subpixel. The first subpixel is a subpixel that emits light with the shortest wavelength (e.g., blue light or light with a shorter wavelength than blue light) in subpixels included in the first pixel. The second subpixel has a function of receiving the light emitted by the first subpixel. The third subpixel is a subpixel that emits light with the shortest wavelength in subpixels included in the second pixel. The wavelength of the light emitted by the first subpixel is shorter than the wavelength of the light emitted by the third subpixel.
Abstract:
An object is to provide a display device having a function of emitting visible light and infrared light and an imaging function. Another object is to increase the definition without changing the density of imaging elements while the high resolution of an image displayed on a display device is kept. The display device has a layout in which a light-receiving region of an imaging element is provided between light-emitting regions of a plurality of light-emitting elements over one substrate. In the imaging function of the display device, as a means for increasing the definition of a captured image, the definition is increased without changing the density of imaging elements by capturing an image by time division.
Abstract:
A data processing device is provided. The data processing device includes a functional panel and a first surface to a fifth surface. The functional panel includes a first region to a fifth region. The second region performs display in one direction. The third region is positioned between the first region and the second region and can be bent. The fifth region is positioned between the first region and the fourth region and can be bent. The fourth region has a function of performing display in one direction in a state where the third region and the fifth region are bent. The first surface includes the first region and a light-emitting element. The light-emitting element emits light. The second surface includes the second region and a photoelectric conversion element. The photoelectric conversion element converts the light into an electric signal. The third surface is positioned between the first surface and the second surface, can be bent, and includes the third region. The fourth surface includes the fourth region. The fifth surface is positioned between the first surface and the fourth surface, can be bent, and includes the fifth region. The photoelectric conversion element faces the light-emitting element following the bending of the third surface.
Abstract:
A display device having a photosensing function is provided. A display device having a biometric authentication function typified by fingerprint authentication is provided. A display device having both a touch panel function and a biometric authentication function is provided. The display device includes a first substrate, a light guide plate, a first light-emitting element, a second light-emitting element, and a light-receiving element. The first substrate and the light guide plate are provided to face each other. The first light-emitting element and the light-receiving element are provided between the first substrate and the light guide plate. The first light-emitting element has a function of emitting first light through the light guide plate. The second light-emitting element has a function of emitting second light to a side surface of the light guide plate. The light-receiving element has a function of receiving the second light and converting the second light into an electric signal. The first light includes visible light, and the second light includes infrared light.
Abstract:
A novel display device that is highly convenient, useful, or reliable is provided. The display device includes a light guide plate, a display panel, and an intermediate layer, and the light guide plate includes a first surface and a second surface. The first surface is irradiated with light, the second surface has a function of distributing light, the second surface is in contact with the intermediate layer, and the second surface has a first refractive index N1 in a region in contact with the intermediate layer. The display panel faces the second surface, the display panel is in contact with the intermediate layer, and the display panel has a function of scattering the distributed light. The intermediate layer includes a region positioned between the second surface and the display panel, and the intermediate layer has a second refractive index N2 in a region in contact with the second surface. The second refractive index N2 is smaller than the first refractive index N1.
Abstract:
A semiconductor device including an oxide semiconductor and an organic resin film is manufactured in the following manner. Heat treatment is performed on a first substrate provided with an organic resin film over a transistor including an oxide semiconductor in a reduced pressure atmosphere; handling of the first substrate is performed in an atmosphere containing moisture as little as possible in an inert gas (e.g., nitrogen) atmosphere with a dew point of lower than or equal to −60° C., preferably with a dew point of lower than or equal to −75° C. without exposing the first substrate after the heat treatment to the air; and then, the first substrate is bonded to a second substrate that serves as an opposite substrate.
Abstract:
A semiconductor device including an oxide semiconductor and an organic resin film is manufactured in the following manner. Heat treatment is performed on a first substrate provided with an organic resin film over a transistor including an oxide semiconductor in a reduced pressure atmosphere; handling of the first substrate is performed in an atmosphere containing moisture as little as possible in an inert gas (e.g., nitrogen) atmosphere with a dew point of lower than or equal to −60° C., preferably with a dew point of lower than or equal to −75° C. without exposing the first substrate after the heat treatment to the air; and then, the first substrate is bonded to a second substrate that serves as an opposite substrate.
Abstract:
The resolution of a display apparatus having a light detection function is increased. A display apparatus includes a plurality of transistors and a light-emitting and light-receiving device in a subpixel. The light-emitting and light-receiving device has a function of emitting light of a first color and a function of receiving light of a second color. One of a source and a drain of a first transistor is electrically connected to a first wiring, and the other thereof is electrically connected to a gate of a second transistor. One electrode of the light-emitting and light-receiving device is electrically connected to one of a source and a drain of the second transistor, one of a source and a drain of a third transistor, and one of a source and a drain of a fifth transistor. One of a source and a drain of a fourth transistor is electrically connected to a second wiring, and the other thereof is electrically connected to the other of the source and the drain of the third transistor.
Abstract:
An electronic device having an authentication method with a high security level is provided. The electronic device includes a pixel portion, a sensor portion, an authentication portion, and a housing. The pixel portion includes a display element and a light-receiving element. The pixel portion has a function of turning on the display element. The pixel portion has a function of obtaining authentication information by capturing an image of a target object touching the pixel portion. The sensor portion has a function of detecting attachment or detachment to a living body or an object. The authentication portion has a function of performing authentication processing with the use of the authentication information. The housing includes a first surface and a second surface opposite to the first surface. The pixel portion is positioned on the first surface and the sensor portion is positioned on the second surface.