Abstract:
To improve the yield in a peeling process and improve the yield in a manufacturing process of a flexible light-emitting device or the like, a peeling method includes a first step of forming a peeling layer over a first substrate, a second step of forming a layer to be peeled including a first layer in contact with the peeling layer over the peeling layer, a third step of curing a bonding layer in an overlapping manner with the peeling layer and the layer to be peeled, a fourth step of removing part of the first layer overlapping with the peeled layer and the bonding layer to form a peeling starting point, and a fifth step of separating the peeling layer and the layer to be peeled. The peeling starting point is preferably formed by laser light irradiation.
Abstract:
A method for manufacturing a display device is provided. The method includes: forming, between a first substrate and a second substrate, a light-emitting element including an electroluminescence layer and a wiring over which a peeling layer formed by using the material of the electroluminescence layer is provided; and peeling whole of the second substrate from the first substrate so that the peeling layer over the wiring is simultaneously exposed.
Abstract:
A display device with improved viewing angle characteristics is provided. A display device with suppressed mixture of colors between adjacent pixels is provided. The display device includes a first coloring layer, a second coloring layer, and a structure body therebetween. The structure body has a portion closer to a display surface side than a bottom surface of the first coloring layer or a bottom surface of the second coloring layer.
Abstract:
A display device with improved viewing angle characteristics is provided. A display device with suppressed mixture of colors between adjacent pixels is provided. The display device includes a first coloring layer, a second coloring layer, and a structure body therebetween. The structure body has a portion closer to a display surface side than a bottom surface of the first coloring layer or a bottom surface of the second coloring layer.
Abstract:
Display unevenness in a display panel is suppressed. A display panel with a high aperture ratio of a pixel is provided. The display panel includes a first pixel electrode, a second pixel electrode, a third pixel electrode, a first light-emitting layer, a second light-emitting layer, a third light-emitting layer, a first common layer, a second common layer, a common electrode, and an auxiliary wiring. The first common layer is positioned over the first pixel electrode and the second pixel electrode. The first common layer has a portion overlapping with the first light-emitting layer and a portion overlapping with the second light-emitting layer. The second common layer is positioned over the third pixel electrode. The second common layer has a portion overlapping with the third light-emitting layer. The common electrode has a portion overlapping with the first pixel electrode with the first common layer and the first light-emitting layer provided therebetween, a portion overlapping with the second pixel electrode with the first common layer and the second light-emitting layer provided therebetween, a portion overlapping with the third pixel electrode with the second common layer and the third light-emitting layer provided therebetween, and a portion in contact with a top surface of the auxiliary wiring.
Abstract:
An object of this invention is to provide a highly portable light-emitting device or a highly browsable light-emitting device. The light-emitting device includes a joint portion, and a plurality of light-emitting units apart from each other with the joint portion positioned therebetween. The joint portion and the light-emitting units are flexible. The joint portion can be bent to a curvature radius smaller than a curvature radius to which the light-emitting unit can be bent. The light-emitting unit is supplied with a signal through a side not adjacent to the joint portion or is supplied with a signal by wireless communication.
Abstract:
A light-emitting device or a display device that is less likely to be broken is provided. Provided is a light-emitting device including an element layer and a substrate over the element layer. At least a part of the substrate is bent to the element layer side. The substrate has a light-transmitting property and a refractive index that is higher than that of the air. The element layer includes a light-emitting element that emits light toward the substrate side. Alternatively, provided is a light-emitting device including an element layer and a substrate covering a top surface and at least one side surface of the element layer. The substrate has a light-transmitting property and a refractive index that is higher than that of the air. The element layer includes a light-emitting element that emits light toward the substrate side.
Abstract:
A display device with high design flexibility is provided. The display device includes a display element, a touch sensor, and a transistor between two flexible substrates. An external electrode that supplies a signal to the display element and an external electrode that supplies a signal to the touch sensor are connected from the same surface of one of the substrates.
Abstract:
An object is to improve use efficiency of an evaporation material, to reduce manufacturing cost of a light-emitting device, and to reduce manufacturing time needed for a light-emitting device including a layer containing an organic compound. The pressure of a film formation chamber is reduced, a plate is rapidly heated by heat conduction or heat radiation by using a heat source, a material layer on a plate is vaporized in a short time to be evaporated to a substrate on which the material layer is to be formed (formation substrate), and then the material layer is formed on the formation substrate. The area of the plate that is heated rapidly is set to have the same size as the formation substrate and film formation on the formation substrate is completed by one application of heat.
Abstract:
A light-emitting device or a display device that is less likely to be broken is provided. Provided is a light-emitting device including an element layer and a substrate over the element layer. At least a part of the substrate is bent to the element layer side. The substrate has a light-transmitting property and a refractive index that is higher than that of the air. The element layer includes a light-emitting element that emits light toward the substrate side. Alternatively, provided is a light-emitting device including an element layer and a substrate covering a top surface and at least one side surface of the element layer. The substrate has a light-transmitting property and a refractive index that is higher than that of the air. The element layer includes a light-emitting element that emits light toward the substrate side.