Abstract:
A selective removal of chlorine and phosphorus that are detrimental to subsequent hydrothermal hydrocatalytic conversion from the biomass feed prior to carrying out catalytic hydrogenation/hydrogenolysis/hydrodeoxygenation of the biomass in a manner that does not reduce the effectiveness of the hydrothermal hydrocatalytic treatment while minimizing the amount of water used in the process is provided.
Abstract:
A selective removal chlorine and phosphorus that are detrimental to subsequent hydrothermal hydrocatalytic conversion from the biomass feed prior to carrying out catalytic hydrogenation/hydrogenolysis/hydrodeoxygenation of the biomass in a manner that does not reduce the effectiveness of the hydrothermal hydrocatalytic treatment while minimizing the amount of water used in the process is provided.
Abstract:
When processing cellulosic biomass, it may be desirable for a digestion unit to operate without being fully depressurized for process efficiency purposes. Methods for processing cellulosic biomass may comprise providing a biomass conversion system comprising a pressurization zone and a digestion unit that are operatively connected to one another; providing cellulosic biomass at a first pressure; introducing at least a portion of the cellulosic biomass into the pressurization zone and pressurizing the pressurization zone to a second pressure higher than the first pressure; after pressurizing the pressurization zone, transferring at least a portion of the cellulosic biomass from the pressurization zone to the digestion unit, which is at a third pressure that is less than or equal to the second pressure but higher than the first pressure; and digesting at least a portion of the cellulosic biomass in the digestion unit to produce a hydrolysate comprising soluble carbohydrates.
Abstract:
A partially digested biomass solids is converted in a fixed bed catalytic reduction reactor under hydrothermal catalytic condition with a supported metal catalyst having a high void fraction. The catalyst having high void fraction allows high permeability and extends reaction run time.
Abstract:
A process for the production of a higher hydrocarbon from solid biomass is provided. The process provides for ready separation of organic phase from aqueous phase which organic phase maybe recycled as a digestive solvent in a digestion and/or deoxygenation of solid biomass. By contacting the oxygenated hydrocarbon intermediate containing diols produced from the digestion and deoxygenation of solid biomass with an amorphous silica alumina catalyst reduces the diols content and product stream readily separates into organic phase and aqueous phase.
Abstract:
Digestion of cellulosic biomass solids may be complicated by release of lignin therefrom. Methods and systems for processing a reaction product containing lignin-derived products, such as phenolics, can comprise hydrotreating the reaction product to convert the lignin-derived products to desired higher molecular weight compounds. The methods can further include separating the higher molecular weight compounds from unconverted products, such as unconverted phenolics, and recycling the unconverted phenolics for use as at least a portion of the digestion solvent and for further conversion to desired higher molecular weight compounds with additional hydrotreatment.
Abstract:
A method comprises introducing cellulosic biomass solids to a digester comprising a reactor, gas feed line, biomass feed system, fluid circulation system including a fluid inlet, a pump, and an injector, a screen positioned within the reactor and defining a lower zone therebelow, and a bed of reactor packing material resting on the screen and defining thereby a packed zone; providing a liquid phase digestion medium containing a slurry catalyst in the digester, the catalyst being capable of activating molecular hydrogen; circulating the liquid phase digestion medium through the fluid circulation system; supplying an upwardly directed flow of molecular hydrogen through the cellulosic biomass solids; and maintaining the cellulosic biomass solids and slurry catalyst at a temperature sufficient to cause digestion of cellulosic biomass solids into an alcoholic component.
Abstract:
Processing of a reaction product mixture of cellulosic biomass material containing at least one volatile organic compound at least one of lignin, a lignin-derived compound, unextracted cellulose, unextracted hemicellulose, a caramelan, and any combination thereof by vaporizing the at least one volatile organic compound using at least thermal energy generated by combusting at least a portion of the reaction product mixture. In a particular embodiment, the reaction product mixture comes from reactions involving deconstruction (or digestion) of cellulosic biomass which contains various polysaccharides (e.g., carbohydrates) and lignin.
Abstract:
A selective removal of metal and its anion species that are detrimental to subsequent hydrothermal hydrocatalytic conversion from the biomass feed prior to carrying out catalytic hydrogenation/hydrogenolysis/hydrodeoxygenation of the biomass in a manner that does not reduce the effectiveness of the hydrothermal hydrocatalytic treatment while minimizing the amount of water used in the process is provided.