Abstract:
Methods for processing a lignocellulosic biomass are provided and include the steps of: combining the lignocellulosic biomass with a hydrophobic deep eutectic solvent (HDES); heating a mixture including the lignocellulosic biomass and the HDES; and separating the mixture into a HDES phase including a first constituent of the lignocellulosic biomass, an aqueous phase including a second constituent of the lignocellulosic biomass, and a solid-residue phase including a third constituent of the lignocellulosic biomass. Water is added to the combination of the lignocellulosic biomass and the HDES, either before or after heating. An acidic additive can be added prior to heating the mixture including the lignocellulosic biomass and the HDES, or a ternary HDES including an acidic compound can be utilized, to further promote dissolution of the lignocellulosic biomass prior to heating.
Abstract:
The invention relates to a method for separating a mixture in a system comprising a plurality of chromatography columns, the method successively comprising, in a cyclical manner, in a given part of the system: a step of collecting a raffinate; a step of injecting the mixture to be separated; a step of collecting an extract; and a step of injecting a mobile phase; the method further comprising: determining, in a node of the system, the history of a variable representing the concentration of at least one species contained in the mixture to be separated; detecting, within said history, a characteristic point between the beginning of a step of collecting the extract and the end of the following step of collecting the raffinate; comparing the position of the characteristic point in relation to a target position; and adjusting the carrier volume of the characteristic point, modifying the position of the characteristic point in order to bring the position of the characteristic point closer to the target position; the volume of the mobile phase injected per cycle being maintained higher than, or equal to, a minimum threshold and/or lower than, or equal to, a maximum threshold. The invention also relates to a computer program for carrying out the steps of such a method, to a storage medium on which such a program is recorded, and to a system comprising a processor coupled to a memory on which such a program is recorded.
Abstract:
The present invention is directed to a novel and advantageous process for the purification of biomass hydrolysate as well as the purified hydrolysate produced after the inventive process and the use of the purified hydrolysate as a fermentation medium.
Abstract:
The present disclosure relates to a physically pretreated biomass composition capable of membrane filtration treatment in a biomass solid-liquid separation process, and a method for preparing sugar therefrom. The physically pretreated biomass composition is very useful for the biomass treatment process because MF clogging phenomena do not occur through specific physical pretreatment (attrition milling) of herbaceous biomass and because MF passage speed is improved such that MF can be used in the biomass solid-liquid separation process.
Abstract:
The invention relates to an improved process for separating lignin and monomeric sugars from a liquor comprising lignin and monomeric sugars in a solvent mixture of water and at least one organic solvent, which employs membrane filtration techniques such as nanofiltration and selective water removal, preferably by permeation through a membrane which is selective for water molecules. The invention further relates to a modular system for executing the process according to the invention. The process and system according to the invention are particularly suitable to be incorporated with pre-treatment of lignocellulosic biomass, in particular by organosolv fractionation or solvolysis.
Abstract:
A method of separating a saccharide from an aqueous product solution of the cellulose hydrolysis process is provided. The aqueous product solution comprises a saccharide and a cellulose swelling agent. The cellulose swelling agent is zinc chloride, magnesium chloride or a combination thereof. The method comprises the following steps in the given order: (a) adding a first tertiary amine and an optional first organic solvent to the aqueous product solution to provide a mixture; (b) performing a solid-liquid separation to obtain a solution from the mixture; and (c) performing a liquid-liquid extraction by adding a second tertiary amine and a second organic solvent to the solution, and then removing the organic phase and collecting the aqueous phase, wherein the first tertiary amine and the second tertiary amine are the same or different, and the first organic solvent and the second organic solvent are the same or different.
Abstract:
Compositions comprising C5 and C6 monosaccharides and low levels of undesirable impurities, such as compounds containing sulfur, nitrogen, or metals, are disclosed.
Abstract:
A method of producing a sugar liquid from cellulose-containing biomass includes (1) to (4): (1) subjecting a cellulose-containing biomass to a dilute sulfuric acid treatment and thereafter separating the treated cellulose-containing biomass into a dilute sulfuric acid-treated liquid and a cellulose-containing solid content; (2) adding a cellulase to the cellulose-containing solid content to hydrolyze the cellulose and thereafter obtaining a sugar liquid; (3) filtering the dilute sulfuric acid-treated liquid through a nanofiltration membrane at pH 2.5 or lower to thereby separate a sugar concentrated liquid as a retentate and at the same time recover a sulfuric acid aqueous solution as a permeate; and (4) reusing the whole amount or a part of the sulfuric acid aqueous solution obtained in (3) in the dilute sulfuric acid treatment in (1).
Abstract:
The present invention relates to methods of processing lignocellulosic material to obtain hemicellulose sugars, cellulose sugars, lignin, cellulose and other high-value products. Also provided are hemicellulose sugars, cellulose sugars, lignin, cellulose, and other high-value products.
Abstract:
A saccharified solution production method includes: a saccharifying step of saccharifying hemicellulose or cellulose contained in cellulosic biomass to C5 or C6 saccharides by subjecting a slurry of cellulosic biomass to a hot water treatment in a supercritical state or subcritical state; a washing step of successively washing a solid in the slurry with washing water after the saccharifying step, by using multiple stages of thickeners for washing arranged in series so that the direction of movement of the solid in the slurry and the direction of movement of overflow water are opposite to each other; and a concentration step of removing a solid residue from the washing water recovered in the washing step by using a thickener for still standing that is different from the thickeners for washing, and then concentrating a supernatant of the thickener for still standing by using a concentration device to give a saccharified solution.