Abstract:
A plasma display apparatus which can surely prevent an overcurrent flowing in a driver for driving electrodes of a plasma display panel. A power source is shut off when an internal short-circuit state of a column electrode driver is detected based on a current or an electric potential on a power line in a column electrode driver detected during a light emission sustaining period.
Abstract:
A plasma display panel driving method and a plasma display apparatus which can reduce power consumption. A selective discharge is generated at least once for selectively setting each of discharge cells of a plasma display panel either to a lit discharge cell state or to an unlit discharge cell state in accordance with a video signal. In this case, the number of times the selective discharge is generated is changed in accordance with the power consumption associated with the selective discharge.
Abstract:
A data voltage source circuit is provided for applying column electrode driving voltage to a column electrode driver. The data voltage source circuit has a voltage source for supplying column electrode driving voltage of about one half of a maximum voltage for driving the column electrode, a diode provided between the voltage source and an output terminal, a first switch and a second switch, and a voltage adding capacitor provided between a junction of the first and second switches and the output terminal. The column driver has an input terminal connected to the output terminal of the data voltage source circuit, a plurality of output terminals connected to the column electrodes, a third switch, and a fourth switch. A control circuit is provided for producing control signals for controlling the first to fourth switches. The control signals control ON/OFF operations of first to fourth switches for stepwisely applying the column electrode driving voltage of one half of the maximum voltage and the maximum voltage.
Abstract:
The semiconductor device has a unit stack body including a plurality of units stacked on one another. Each unit includes a power terminal constituted of a lead part and a connection part. The connection part is formed with a projection and a recess. When the units are stacked on one another, the projection of one unit is fitted to the recess of the adjacent unit, so that the power terminals of the respective unit are connected to one another.
Abstract:
A driving apparatus for a display panel capable of reducing a circuit scale while suppressing the drop of a contrast includes a scan driver having a first power source for generating a first voltage, generating a scan pulse for bringing the capacitive light emission device to either an ON state or an OFF state based on the first voltage, and applying the scan pulse to the row electrode, a sustain driver having a second power source for generating a second voltage, generating a sustain pulse for allowing the capacitive light emission device set to the ON state to emit light based on the second voltage, and applying the scan pulse to the row electrode, and a reset driver generating a reset pulse for initializing the capacitive light emission device based on the sum of the first voltage and the second voltage, and applying the reset pulse to the row electrode.
Abstract:
A display device in which a driver circuit supplies a sustain discharge pulse between a pair of row electrodes by performing a process having, under a state fixed one row electrode for each pair of row electrodes at a first potential in a light emission sustain period of a display panel, a first step of gradually changing the potential of the other row electrode for each pair of row electrodes from the first potential toward a second potential by means of resonance between a capacitive load and a first inductor; a second step of fixing the other row electrode in the pair of row electrodes at the second potential; and a third step of gradually changing the potential of the other row electrode of the pair of row electrodes from the second potential toward the first potential by means of resonance between the capacitive load and a second inductor; performs the second step before the potential of the other row electrode of the pair of row electrodes reaches the second potential at the first step when power consumption is not limited; and reduces the length of the period of the second step and performs the third step after completion of the reduced second step when power consumption is limited.
Abstract:
A driving apparatus of a plasma display panel which is capable of reducing the scale of the driver itself while limiting power consumed by the plasma display panel. The value of power consumed during a non-light emitting period in one field (frame) period is added to an average luminance level of an input video signal to derive average power consumption, and the power consumed by the plasma display panel is controlled on the basis of the average power consumption.
Abstract:
A driving apparatus of a display panel performs a high speed operation with a construction having a small scale. The driving apparatus is constituted by a DC power source to generate a DC voltage, a first capacitor connected in parallel with the DC power source, a coil whose one end is connected to a positive side terminal of the DC power source, switching device which alternately connects and disconnects the other end of the coil to a negative side terminal of the DC power source, a diode whose anode is connected to the other end of the coil and whose cathode is connected to the negative side terminal of the DC power source, and a second capacitor connected in parallel with the diode. A change in electric potential occurring at the other end of the coil is outputted as a driving pulse.
Abstract:
A driving apparatus of a display panel permits an electric power consumption at the time of generation of a pixel data pulse can be reduced. Charges stored in a capacitor are discharged and supplied to a power line. Subsequently, a power potential is applied to the power line and, thereafter, charges stored on column electrodes of the display panel are charged into the capacitor via the power line. Finally, the power line is connected to the ground only for a short predetermined period of time. By connecting the power line and the column electrodes only for a predetermined period of time in accordance with a video signal, the pixel data pulses are applied to the column electrodes.
Abstract:
A display panel driving circuit for driving a display panel, in which the electric power consumption at the time of the switching can be reduced. The display panel driving apparatus allows the use of a switching device of a low withstanding voltage. A transition voltage generating circuit for shifting a voltage of a DC power source of the driving apparatus is provided. A resonance relay circuit is provided for generating a pulse having a leading edge which rises gradually and a trailing edge which decreases gradually based on the transition voltage and supplying it as a drive pulse to the display panel. A plurality of resonance circuits for driving and exciting capacitive devices of the display panel are provided in a range of different driving potentials. The drive pulse having the leading edge which rises gradually and the trailing edge which decreases gradually is generated by switching each of the resonance circuits by the switching device to make them operative sequentially.