摘要:
The present invention relates to a novel method for expanding mesenchymal stem cells (MSCs) in low-density and hypoxic condition as compared to normal air conditions traditionally used in cell culture. The present method provides rapid and efficient expansion of human MSCs without losing cellular proliferation and stem cell properties, including increase in proliferation, decrease in senescence, and increase in differentiation potential both in vitro and in vivo. The expanded MSCs by the present method may maintain normal karyotyping, and will not form tumor when transplanted into mamma.
摘要:
An integrated structure of an IGBT and a diode includes a plurality of doped cathode regions, and a method of forming the same is provided. The doped cathode regions are stacked in a semiconductor substrate, overlapping and contacting with each other. As compared with other doped cathode regions, the higher a doped cathode region is disposed, the larger implantation area the doped cathode region has. The doped cathode regions and the semiconductor substrate have different conductive types, and are applied as a cathode of the diode and a collector of the IGBT. The stacked doped cathode regions can increase the thinness of the cathode, and prevent the wafer from being overly thinned and broken.
摘要:
A method of forming a power device includes providing a substrate, a semiconductor layer having at least a trench and being disposed on the substrate, a gate insulating layer covering the semiconductor layer, and a conductive material disposed in the trench, performing an ion implantation process to from a body layer, performing a tilted ion implantation process to from a heavy doped region, forming a first dielectric layer overall, performing a chemical mechanical polishing process until the body layer disposed under the heavy doped region is exposed to form source regions on the opposite sides of the trench, and forming a source trace directly covering the source regions disposed on the opposite sides of the trench.
摘要:
A method for promoting a differentiation of stem cells into insulin producing cells is provided. The method includes steps of suspending the stem cells in a first culture medium, aggregating the stem cells to form a cell pellet, and culturing the cell pellet in a second culture medium to promote the differentiation of the stem cells of the cell pellet into the insulin producing cells.