Abstract:
Devices, systems, and methods for enhancing Raman spectroscopy and hyper-Raman are disclosed. A molecular analysis device for performing Raman spectroscopy comprises a substrate and a laser source disposed on the substrate. The laser source may be configured for emanating a laser radiation, which may irradiate an analyte disposed on a Raman enhancement structure. The Raman enhancement structure may be disposed in a waveguide. The molecular analysis device also includes a wavelength demultiplexer and radiation sensors disposed on the substrate and configured for receiving a Raman scattered radiation, which may be generated by the irradiation of the analyte and Raman enhancement structure.
Abstract:
Devices, systems, and methods using Surface Enhanced Raman Spectroscopy (SERS) are disclosed. A device for generating Raman scattered radiation comprises a laser source and a SERS-active structure. The laser source may be configured for emanating radiation from an emanating surface or by forming a depression in the laser source, which creates a region of increased evanescent field from the laser source. SERS systems and methods include a device for generating Raman scattered radiation with a detector configured to receive the Raman scattered radiation.
Abstract:
SERS-active structures including features having nanoscale dimensions are disclosed, including methods for forming such SERS-active structures and methods for forming a plurality of such SERS-active structures. Methods for performing SERS using SERS-active structures also are disclosed.
Abstract:
According to an example, an apparatus for performing spectroscopy includes a parabolic reflector and a plurality of surface-enhanced Raman spectroscopy (SERS) elements spaced from the parabolic reflector and positioned substantially at a focal point of the parabolic reflector. The parabolic reflector is to reflect Raman scattered light emitted from molecules in a near field generated by the plurality of SERS elements to substantially increase the flux of the Raman scattered light emitted out of the apparatus.
Abstract:
A light amplifying device for surface enhanced Raman spectroscopy is disclosed herein. The device includes a dielectric layer having two opposed surfaces. A refractive index of the dielectric layer is higher than a refractive index of a material or environment directly adjacent thereto. At least one opening is formed in one of the two opposed surfaces of the dielectric layer, and at least one nano-antenna is established on the one of the two opposed surfaces of the dielectric layer. A gain region is positioned in the dielectric layer or adjacent to another of the two opposed surfaces of the dielectric layer.
Abstract:
Systems and methods employ a layer having a pattern that provides multiple discrete guided mode resonances for respective couplings of separated wavelengths into the layer. Further, a structure including features shaped to enhance Raman scattering to produce light of the resonant wavelengths can be employed with the patterned layer.
Abstract:
A sensing device that produces a Raman signal includes micro-rods or nano-rods arranged on a substrate in a two-dimensional (2D) array, each of the rods having a length in a single row being substantially the same, with the rod length of each row being different from the rod length of each other row. Each row of rods has a respective resonant vibration frequency that varies from row to row. A source of vibration energy, operatively connected to the substrate, excites vibration in each of the rods such that a responding row resonates when an exciting frequency approaches the resonant vibration frequency of the responding row. A method includes exposing the 2D array to a light source and analyzing Raman scattering at each rod of the 2D array to render a Raman map.
Abstract:
A tunable apparatus for performing Surface Enhanced Raman Spectroscopy (SERS) includes a deformable substrate and a plurality of SERS-active nanoparticles disposed at a plurality of locations on the deformable substrate. The plurality of SERS-active nanoparticles are to enhance Raman scattered light emission from an analyte molecule located in close proximity to the SERS-active nanoparticles. In addition, the deformable substrate is to be deformed to vary distances between the SERS-active nanoparticles, in which varying distances between the SERS-active nanoparticles varies enhancement of an intensity of Raman scattered light emission from the analyte molecule.
Abstract:
A memory element is provided that includes a first electrode, a second electrode, and an active region disposed between the first electrode and the second electrode, wherein at least a portion of the active region comprises an elastically deformable material, and wherein deformation of the elastically deformable material causes said memory element to change from a lower conductive state to a higher conductive state. A multilayer structure also is provided that includes a base and a multilayer circuit disposed above the base, where the multilayer circuit includes at least of the memory elements including the elastically deformable material.
Abstract:
Systems and methods employ a layer having a pattern that provides multiple discrete guided mode resonances for respective couplings of separated wavelengths into the layer. Further, a structure including features shaped to enhance Raman scattering to produce light of the resonant wavelengths can be employed with the patterned layer.