Abstract:
A memristive switch device can comprise a switch formed between a first electrode and a second electrode, where the switch includes a memristive layer and a select layer directly adjacent the memristive layer. The select layer blocks current to the memristive layer over a symmetric bipolar range of subthreshold voltages applied between the first and second electrodes.
Abstract:
A nanoscale switching device has an active region containing a switching material capable of carrying a species of dopants and transporting the dopants under an electrical field. The switching device has first, second and third electrodes with nanoscale widths. The active region is disposed between the first and second electrodes. A resistance modifier layer, which has a non-linear voltage-dependent resistance, is disposed between the second and third electrodes.
Abstract:
A memory element is provided that includes a first electrode, a second electrode, and an active region disposed between the first electrode and the second electrode, wherein at least a portion of the active region comprises an elastically deformable material, and wherein deformation of the elastically deformable material causes said memory element to change from a lower conductive state to a higher conductive state. A multilayer structure also is provided that includes a base and a multilayer circuit disposed above the base, where the multilayer circuit includes at least of the memory elements including the elastically deformable material.
Abstract:
A memristive switch device can comprise a switch formed between a first electrode and a second electrode, where the switch includes a memristive layer and a select layer directly adjacent the memristive layer. The select layer blocks current to the memristive layer over a symmetric bipolar range of subthreshold voltages applied between the first and second electrodes.
Abstract:
A memristive device (200) includes a first electrode (104); a second electrode (102); a junction (106) between the first electrode (104) and the second electrode (102), the junction (106) including a semiconductor matrix (230) and particles (240) embedded in the semiconductor matrix (230), the particles (240) being configured to hold a selectable level of electrical charge, the electrical charge controlling the amount of current flowing through the junction (106) for a given reading voltage. A method for using a memristive device (200) includes: applying a first voltage across a memristive junction (106), the memristive junction (106) including a semiconductor matrix (230) and particles (240) embedded in the semiconductor matrix (230); electrical charges introduced into the semiconductor matrix (230) by the first programming voltage being trapped within the particles (240); applying a reading voltage across the memristive junction (106); and measuring a current across the junction (106), the current being reduced proportionally to the electrical charges trapped within the potential wells, the current being used to determine a state of the junction (106).
Abstract:
A memcapacitive device includes a first electrode having a first end and a second end and a second electrode. The device has a memcapacitive matrix interposed between the first electrode and the second electrode. The memcapacitive matrix has a non-linear capacitance with respect to a voltage across the first electrode and the second electrode. The memcapacitive matrix is configured to alter a signal applied on the first end by at least one of a) changing at least one of a rise-time and a fall-time of the signal and b) delaying the transmission of the signal based on the application of a programming voltage across the first electrode and the second electrode.
Abstract:
A memristive device includes a first electrode; a second electrode; a junction between the first electrode and the second electrode, the junction including a semiconductor matrix and particles embedded in the semiconductor matrix, the particles being configured to hold a selectable level of electrical charge, the electrical charge controlling the amount of current flowing through the junction for a given reading voltage. A method for using a memristive device includes: applying a first voltage across a memristive junction, the memristive junction including a semiconductor matrix and particles embedded in the semiconductor matrix; electrical charges introduced into the semiconductor matrix by the first programming voltage being trapped within the particles; applying a reading voltage across the memristive junction; and measuring a current across the junction, the current being reduced proportionally to the electrical charges trapped within the potential wells, the current being used to determine a state of the junction.
Abstract:
A memcapacitive device includes a first electrode having a first end and a second end and a second electrode. The device has a memcapacitive matrix interposed between the first electrode and the second electrode. The memcapacitive matrix has a non-linear capacitance with respect to a voltage across the first electrode and the second electrode. The memcapacitive matrix is configured to alter a signal applied on the first end by at least one of a) changing at least one of a rise-time and a fall-time of the signal and b) delaying the transmission of the signal based on the application of a programming voltage across the first electrode and the second electrode.
Abstract:
A nanoscale switching device has an active region containing a switching material capable of carrying a species of dopants and transporting the dopants under an electrical held. The switching device has first, second and third electrodes with nanoscale widths. The active region is disposed between the first and second electrodes. A resistance modifier layer, which has a non-linear voltage-dependent resistance, is disposed between the second and third electrodes.