Abstract:
Embodiments disclose an energy generation system including a photovoltaic (PV) array having a plurality of PV modules for generating direct current (DC) power, a plurality of Opti-battery packs coupled to the PV array, where each Opti-battery pack is coupled to a respective PV module and configured to receive DC power from the respective PV module, and an inverter configured to receive DC power from the plurality of Opti-battery packs and to convert the DC power to alternating current (AC) power.
Abstract:
An indicator device includes a housing configured to be coupled to positive and negative DC wire lines that supply power from an energy generation source to an inverter. The indicator device further includes a current sensor for measuring a current level on the positive and negative DC wire lines, and voltage sensors for measuring a first voltage across the positive and negative DC wire lines, a second voltage across the positive DC wire line and a ground terminal, and a third voltage across the negative DC wireline and the ground terminal. A circuit block compares the measured current level to one or more threshold current levels, and further compares the measured first, second and third voltages to one or more threshold voltage levels, and in response provides an output signal. A visual indicator receives the output signal from the circuit block, and in response provides a visual indication of whether voltage and current levels on the positive and negative DC wire lines are at levels that may harm humans.
Abstract:
A method of monitoring state of health for an energy generation system includes receiving a measurement of a parameter of an electrical component in the PV energy generation system at an instance in time, referencing a look-up table containing several values of the parameter representing an expected degradation trend across a progression of time for the electrical component, comparing the measurement to an expected value of the expected degradation trend for a period of time corresponding to the instance in time, and initiating a preventative measure based upon the comparison between the measurement and the expected value of the expected degradation trend.
Abstract:
A manually controlled coupling mechanism for onsite energy generation and storage systems includes a first contact portion having a first electrical contact for coupling to an utility grid and a second electrical contact for coupling to an on-grid AC terminal of an inverter, a second contact portion having a third electrical contact for coupling to an off-grid output terminal of the inverter, and a manually activated multi-position switch, wherein in a first position, only the first contact portion is activated to allow power transfer between the utility grid, the on-grid AC terminal of the inverter and a main electrical panel, and in the second position, only the second contact portion is activated to allow power transfer from the off-grid output terminal of the inverter to the main electrical panel.
Abstract:
Embodiments disclose an energy generation system including a photovoltaic (PV) array including a plurality of PV modules for generating direct current (DC) power, a plurality of power converter pairs coupled to the plurality of PV modules and configured to convert the generated DC power to alternating current (AC) power, and a plurality of battery packs coupled to the plurality of power converter pairs. Each power converter pair of the plurality of power converter pairs includes a DC-to-DC converter coupled to a DC-to-AC inverter, where the DC-to-DC converter is directly coupled to a respective PV module. Furthermore, each battery pack is directly coupled to a respective DC-to-DC converter and configured to store DC power from the respective PV module and output stored DC power to the respective power converter pair.
Abstract:
A high-voltage battery pack for an onsite power generation system includes battery modules configured to provide a voltage of at least 170V. High-speed switches and a high-speed current detection circuit are serially coupled between the battery modules and the positive and negative output terminals of the battery pack. A control circuit is operatively coupled to the current detection circuit so that when the current detection circuit detects a fault condition, the control circuit opens one or more of the switches to thereby electrically isolate the battery modules from the positive and negative output terminals of the battery pack. The battery pack is configured so that the at least 170V provided by the battery modules can be provided to an AC stage of the onsite power generation system without an intervening DC/DC converter and/or a transformer.
Abstract:
A high-voltage battery pack for an onsite power generation system includes battery modules configured to provide a voltage of at least 170V. High-speed switches and a high-speed current detection circuit are serially coupled between the battery modules and the positive and negative output terminals of the battery pack. A control circuit is operatively coupled to the current detection circuit so that when the current detection circuit detects a fault condition, the control circuit opens one or more of the switches to thereby electrically isolate the battery modules from the positive and negative output terminals of the battery pack. The battery pack is configured so that the at least 170V provided by the battery modules can be provided to an AC stage of the onsite power generation system without an intervening DC/DC converter and/or a transformer.
Abstract:
Methods and apparatus for controlling an interconnection device may be provided. Sockets of the interconnection device may be configured to electrically couple to respective energy-generation modules. In some examples, the interconnection device may include a connector, memory, and a processor configured to execute instructions for managing the electrical configuration of the sockets.
Abstract:
A string inverter for use with a photovoltaic array includes a string-level DC input channel for receiving DC power from a photovoltaic array. The input channel performs channel-level maximum power point tracking. An input-output channel connects the string inverter to a battery pack. A DC to DC buck-boost circuit between the at least one DC input channel and the at least one input-output channel prevents more than a predetermined amount of DC voltage from reaching the battery pack. A DC to AC inverter circuit having an AC output serving as an output of the string inverter. A revenue grade power meter is configured to measure the AC output of the string inverter.
Abstract:
A system for energy conversion with electric vehicle (EV) charging capability includes a hybrid inverter comprising a DC/DC converter stage for receiving power from a photovoltaic array, a capacitor bank, and a DC-AC inverter coupled to the capacitor bank. The DC-AC inverter includes a battery pack connection for supplying energy to or receiving energy from a battery pack, an AC grid connection for supplying power to or receiving power from an AC grid, a connection for supplying power to a load, and an EV connection for supplying power to or receiving power from an EV battery. The system also includes a controller for generating control signals to control the flow of power within the hybrid inverter, which converts power received from at least one of the photovoltaic array and the battery pack and provides the converted power to charge the EV battery via the EV connection.