Abstract:
A driving circuit includes a switching circuit, an acquiring circuit, an amplifying circuit, and an adjusting circuit. The switching circuit includes a driving chip and a switching unit. The switching unit is connected between a power source and a load, the driving chip is configured for controlling the connection and disconnection of the switching unit. The acquiring circuit is connected between the switching unit and the load, and is configured for providing a feedback to the amplifying circuit. The amplifying circuit includes two amplifying input terminals connected to two terminals of the acquiring circuit and an amplifying output terminal outputting an amplified voltage. The adjusting circuit is connected to the amplifying output terminal and is configured for outputting different control voltages to the driving chip according to the amplified voltage. The driving chip outputs different driving voltages to the switching unit according to the control voltages.
Abstract:
An exemplary infrared control system includes an infrared control unit and a computer. The infrared control unit is capable of transmitting an infrared signal. The computer includes an infrared response unit, and the infrared response unit includes an infrared receiving circuit and a control circuit electrically connected to the infrared receiving circuit. The infrared receiving circuit is capable of receiving the infrared signal from the infrared control unit. Accordingly the control circuit is capable of processing the infrared signal from the infrared receiving circuit to generate a corresponding command signal to control the computer to power on/off or reset.
Abstract:
A measurement circuit includes a switch unit with a number of keys selectively pressed to output different resistance regulating signals. A resistance setting circuit receives the resistance regulating signals and connects different resistances to a control circuit. The control circuit obtains a voltage according to the chosen resistance by the resistance setting circuit and compares the voltage with a preset voltage. If the voltage is greater than the preset voltage, the control circuit outputs a high level signal to a control pin of a pulse width modulation (PWM) controller, to control a voltage unit to output a voltage. If the voltage is less than the preset voltage, the control circuit outputs a low level signal to the control pin of the PWM controller, to control the voltage unit to not output a voltage. A display unit displays the chosen resistance.
Abstract:
A power switch circuit includes a control circuit, and first and second detecting circuits. The control circuit includes first and second field effect transistors (FETs) and first and second sensing resistors. The first detecting circuit includes two input terminals connected to the first and second ends of the first sensing resistor and an output terminal connected to the first FET. The first detecting circuit controls the first FET to be turned on or turned off according to the voltages of the first and second ends of the first sensing resistor. The second detecting circuit includes two input terminals connected to the first and second ends of the second sensing resistor and an output terminal connected to the second FET. The second detecting circuit controls the second FET to be turned on or turned off according to the voltages of the first and second ends of the second sensing resistor.
Abstract:
A keyboard includes a number of first keys, a control circuit, a switch circuit, and a second key. The switch circuit includes a number of switches. The second key is connected to first terminals of two switches of the switch circuit via the control circuit. A second terminal of each of the switches is connected to a first key. When a second key is pressed, the control circuit controls the switches corresponding to the pressed second key to be turned on, to activate the first keys which are connected to the switches.
Abstract:
A monitor includes a main body and a control circuit. The main body includes a display and a shield. The control circuit drives a motor mounted to the main body. The control circuit detects a power status of the main body and controls the motor to rotate in response to the power status of the main body, so as to wrap the shield to uncover the display when the main body powers on, or to cover the display when the main body is idle or powers off.
Abstract:
A motherboard includes a motherboard power supply connector and a time delay circuit. The motherboard power supply connector connects a power supply unit. The motherboard power supply connector has a power supply on pin and a power good pin. The power good pin is configured for receiving a power good signal from the power supply unit. The time delay circuit has an input terminal and an output terminal. The input terminal is configured for receiving a power supply on signal. The output terminal is connected to the power supply on pin and is configured for sending the power supply on signal to the power supply on pin after a time delay determined by the time delay circuit.
Abstract:
A buck converter includes a first MOSFET and a second MOSFET connected in series, a PWM module coupled to gates of the first MOSFET and the second MOSFET, and a control unit being coupled to the input current acquired unit, the input voltage acquired unit, the output current acquired unit, the output voltage acquired unit and the PWM module respectively, wherein the control unit controls a switch frequency of the PWM module and acquires the input current, the input voltage, the output current and the output voltage from the input current acquired unit, the input voltage acquired unit, the output current acquired unit and the output voltage acquired unit respectively.
Abstract:
A driving voltage adjusting circuit includes a digital rheostat, a control chip, a low dropout regulating circuit, and a driving circuit. The control chip is connected with the digital rheostat, and configured for adjusting the resistance of the digital rheostat. The low dropout regulating circuit is connected with the digital rheostat and outputs an output voltage according to the resistance of the digital rheostat. The driving circuit comprising a number of switch elements connected with each other and a driver configured for driving the switch elements, each of the switch elements comprising a first terminal, a second terminal, and a control terminal configured for controlling connection and disconnection of the first terminal and the second terminal; the first terminal and the second terminal connected with the control chip, the driver is connected with the low dropout regulating circuit and output an driving voltage to the control terminal.
Abstract:
A buck converter includes a first electrical switch and a second electrical switch connected in series, a PWM module coupled to the gate of the first electrical switch through a first adjustable resistance module and coupled to the gate of the second electrical switch through a second adjustable resistance module, a filter circuit coupled between the connecting node of the two different electrical switches and an output node, and a control module for adjusting values of the first adjustable resistance module and the second adjustable resistance module and acquiring a voltage value from the connecting node.