Abstract:
A liquid crystal mixture and a temperature-responsive infrared reflection device made by using the liquid crystal mixture containing potassium laurate. Infrared light can pass through the device within a non-working temperature range, and a chiral dopant enables potassium laurate to form a cholesteric phase within a working temperature range. The birefringence value of the potassium laurate gradually increases with the increase of temperature between 12.5° C. and 26° C., so that the infrared reflection bandwidth of the device constantly increases. The birefringence value of the potassium laurate gradually decreases with the increase of temperature between 26° C. and 54.5° C., so that the infrared reflection bandwidth of the device constantly decreases. The infrared reflection bandwidth of the infrared reflection device can vary with temperature by adjusting the proportions of the ingredients of the liquid crystal mixture containing potassium laurate.
Abstract:
Disclosed is an electrofluidic support plate and a method for preparing the same, and an electrofluidic device comprising the support plate. The method comprises the following steps of: providing a substrate which has a surface provided with an electrode layer; arranging a first amorphous fluoropolymer layer on the surface of the substrate, and carrying out hydrophilic modification on a surface of the amorphous fluoropolymer layer; arranging pixel walls on the amorphous fluoropolymer layer after hydrophilic modification; arranging a second amorphous fluoropolymer layer which is a hydrophobic layer; the second amorphous fluoropolymer layer covering all surfaces of the pixel walls and a groove area encircled by the pixel walls; filling the groove area encircled by the pixel walls with a protective material; removing the second amorphous fluoropolymer layer not covered by the protective material and on a top of the pixel walls; and removing the protective material.
Abstract:
A display structure having a high-brightness diffuse reflector, an electrowetting display structure based on the display structure, an in-cell type electrowetting display structure and a manufacturing method thereof are disclosed. The display structure comprises panel glass (1), a display layer (2) and substrate glass (3), wherein a high-brightness diffuse reflection polymer thin film material (4) is arranged under the substrate glass (3); the panel glass (1), the display layer (2), the substrate glass (3) and the diffuse reflection polymer thin film material (4) are stacked in sequence. According to the display structure and manufacturing method thereof of the invention, the required diffuse reflection and contrast ratio approximate to paper can be provided by placing a high-brightness diffuse reflection polymer thin film under a substrate or a display layer of a plate display structure as a diffuse reflection layer or a diffuse reflector.
Abstract:
An electrically controlled smart window, which includes two transparent plates arranged oppositely, a power supply component and an in-between light-adjusting area. Hereinto the light-adjusting area is divided into a matrix of light-adjusting units by pixel wall(s), and every units are closely arranged in a grid shape. To the power supply component, an electrode is connected with the pixel wall, and another is localized on the center of light-adjusting unit and did with the transparent plate. Both surface-charged liquid crystal polymer particles and conductive packing fluid are filled into the medium between the two transparent plates. According to the present disclosure, cholesteric liquid crystal polymer microparticles with specific reflection band and surface charges are used as basic reflectors, thereby achieving the significant advantages of being easy to manufacture, low cost, and stable performance, without causing interference to electromagnetic signals.
Abstract:
Provided are a method for preparing an InGaN-based epitaxial layer on a Si substrate (12), as well as a silicon-based InGaN epitaxial layer prepared by the method. The method may include the steps of: 1) directly growing a first InGaN-based layer (11) on a Si substrate (12); and 2) growing a second InGaN-based layer on the first InGaN-based layer (11).
Abstract:
A water-responsive interpenetrating polymer network, a preparation method and use thereof are provided. The water-responsive interpenetrating polymer network comprises an interpenetrating polymer network formed by a cholesteric liquid crystal polymer and a polyionic liquid; wherein the cholesteric liquid crystal polymer is formed by polymerization of a liquid crystal mixture; and the polyionic liquid contains a hydrophilic group or is a hydrophilic salt. The interpenetrating polymer network is water responsive without needs of activation with an alkaline solution, which simplifies the preparation process, and has stable water responsiveness performance after prolonged and/or repeated exposure to water. The water-responsive interpenetrating polymer network can be used to prepare light reflective coatings and reflective devices, and has higher commercial value.
Abstract:
Disclosed are a laser protective film and a laser protective device comprising the same. The laser protective film comprises, stackingly disposed: a first liquid crystal polymer layer for reflecting left-hand polarized light, a second liquid crystal polymer layer for reflecting right-hand polarized light, and a third liquid crystal polymer layer for absorbing incident laser. In the above way, the laser protective film of the present disclosure has a large angle of protection, high flexibility. In addition, it is easy to find any damage to the laser protective film of the present disclosure. Moreover, it can make modification to existing equipment. Thus, the present disclosure has a good application prospect in many fields such as laser goggles, window glass and the like.
Abstract:
A dye-doped laser protective film is disclosed, comprising a polymer layer A and a polymer layer B. The polymer molecules in the polymer layer A are arranged in a left-handed helical structure which can reflect a left-handed polarized laser. The polymer molecules in the polymer layer B are arranged in a right-handed helical structure which can reflect a right-handed polarized laser. The combination of the polymer layer having the left-handed helical structure and the polymer layer having the right-handed helical structure can completely reflect circularly polarized light. In addition, the dye can absorb incident laser, so as to expand the protection angle of the laser protective film. The dye-doped laser protective film of the present disclosure has a simple manufacturing process, large protection angle and good flexibility, and can refit existing devices. Thus, the dye-doped laser protective film of the present disclosure has a good application prospect in many fields such as laser goggles, window films and the like.
Abstract:
A driving method for reducing ghosting in an electrophoretic display is provided without prolonging driving waveform time and scintillation by improving a driving waveform design. The method comprises four steps: erasing an original image (S1); activating activity of electrophoretic particle (S2); activating electrophoretic particle (S3); and writing a new image (S4). At the electrophoretic particle activating (S3) stage, the electrophoretic particle activating is carried out for a preset duration time (tx), wherein the voltage of the driving waveform is 0V within the preset duration time (tx).
Abstract:
Provided is a nanowire array, in which a plurality of nanowires are densely packed and in contact with each other via side walls to form a three-dimensional, compact layer structure, wherein the plurality of nanowires are formed from InGaN-based material. Also provided is an optoelectronic device comprising the nanowire array which is epitaxially grown on a surface of a substrate (12). Further provided are methods for preparing the nanowire array and the optoelectronic device.