Abstract:
Rules for the signaling and interpretation of chroma position are described. One rule, called the short rule, defines fifteen discrete chroma centering positions and corresponding four-bit syntax element. Another rule, called the extended rule, defines 81 discrete chroma centering positions and corresponding seven-bit syntax elements. A described method includes receiving digital media data at a digital media encoder, determining chroma position information for the received digital media data, and representing the chroma position information with one or more syntax elements in an encoded bitstream. The one or more syntax elements are operable to communicate the chroma position information to a digital media decoder. The chroma position information facilitates an image rotation or flip.
Abstract:
A video decoder receives an entry point key frame comprising first and second interlaced video fields and decodes a first syntax element comprising information (e.g., frame coding mode) for the entry point key frame at a first syntax level (e.g., frame level) in a bitstream. The first interlaced video field is a predicted field, and the second interlaced video field is an intra-coded field. The information for the entry point key frame can be a frame coding mode (e.g., field interlace) for the entry point key frame. The decoder can decode a second syntax element at the first syntax level comprising second information (e.g., field type for each of the first and second interlaced video fields) for the entry point key frame.
Abstract:
In certain embodiments, to eliminate DC leakage into surrounding AC values, scaling stage within a photo overlap transform operator is modified such that the off-diagonal elements of the associated scaling matrix have the values of 0. In certain embodiments, the on-diagonal scaling matrix are given the values (0.5, 2). In some embodiments, the scaling is performed using a combination of reversible modulo arithmetic and lifting steps. In yet other embodiments, amount of DC leakage is estimated at the encoder, and preprocessing occurs to mitigate amount of leakage, with the bitstream signaling that preprocessing has occurred. A decoder may then read the signal and use the information to mitigate DC leakage.
Abstract:
Techniques and tools for intensity compensation for interlaced forward-predicted fields are described. For example, a video decoder receives and decodes a variable length code that indicates which of two reference fields for an interlaced forward-predicted field use intensity compensation (e.g., both, only the first, or only the second). The decoder performs intensity compensation on each of the two reference fields that uses intensity compensation. A video encoder performs corresponding intensity estimation/compensation and signaling.
Abstract:
Techniques and tools for coding/decoding of digital video, and in particular, for determining, signaling and detecting entry points in video streams are described. Techniques and tools described herein are used to embed entry point indicator information in the bitstream that receivers, editing systems, insertion systems, and other systems can use to detect valid entry points in compressed video.
Abstract:
In certain embodiments, to eliminate DC leakage into surrounding AC values, scaling stage within a photo overlap transform operator is modified such that the off-diagonal elements of the associated scaling matrix have the values of 0. In certain embodiments, the on-diagonal scaling matrix are given the values (0.5, 2). In some embodiments, the scaling is performed using a combination of reversible modulo arithmetic and lifting steps. In yet other embodiments, amount of DC leakage is estimated at the encoder, and preprocessing occurs to mitigate amount of leakage, with the bitstream signaling that preprocessing has occurred. A decoder may then read the signal and use the information to mitigate DC leakage.
Abstract:
Techniques and tools for performing fading estimation and compensation in video processing applications are described. For example, a video encoder performs fading compensation on one or more reference images to encode images in which fading is detected. A video decoder performs corresponding fading compensation on the one or more reference images.
Abstract:
Rules for the signaling and interpretation of chroma position are described. One rule, called the short rule, defines fifteen discrete chroma centering positions and corresponding four-bit syntax element. Another rule, called the extended rule, defines 81 discrete chroma centering positions and corresponding seven-bit syntax elements. A described method includes receiving digital media data at a digital media encoder, determining chroma position information for the received digital media data, and representing the chroma position information with one or more syntax elements in an encoded bitstream. The one or more syntax elements are operable to communicate the chroma position information to a digital media decoder. The chroma position information facilitates an image rotation or flip.
Abstract:
Techniques and tools for coding/decoding of digital video, and in particular, for determining, signaling and detecting entry points in video streams are described. Techniques and tools described herein are used to embed entry point indicator information in the bitstream that receivers, editing systems, insertion systems, and other systems can use to detect valid entry points in compressed video.
Abstract:
A decoder receives a field start code for an entry point key frame. The field start code indicates a second coded interlaced video field in the entry point key frame following a first coded interlaced video field in the entry point key frame and indicates a point to begin decoding of the second coded interlaced video field. The first coded interlaced video field is a predicted field, and the second coded interlaced video field is an intra-coded field. The decoder decodes the second field without decoding the first field. The field start code can be followed by a field header. The decoder can receive a frame header for the entry point key frame. The frame header may comprise a syntax element indicating a frame coding mode for the entry point key frame and/or a syntax element indicating field types for the first and second coded interlaced video fields.