摘要:
The object of the invention is to provide a displacement control valve which is capable of shortening a time period for transition in operating displacement, and operating without necessitating a large solenoid force even if the size of the valve is increased so as to increase the amount of refrigerant. A differential pressure-sensing section is separated from a valve section, and caused to sense the differential pressure by a small-diameter piston rod such that even a small-sized solenoid section can set a differential pressure. A valve element, which is formed to have a larger diameter than that of the piston rod to increase the amount of refrigerant, is configured to operate as a member formed in one piece with a shaft. The pressure Pc from a pressure-regulating chamber is received at the axial opposite ends of a reduced-diameter portion of the shaft, and the suction pressure Ps from a suction chamber is received at the axial opposite ends of the one-piece member of the valve element and the shaft, thereby canceling out influence of the pressure Pc and the suction pressure Ps such that the valve element can be controlled only by the differential pressure sensed by the piston rod.
摘要:
A four-way switching valve free from leakage of a refrigerant. A pressure-regulating chamber is switchably connected to a low-pressure chamber or a high-pressure chamber by a three-way solenoid valve, and a pressure-regulating chamber is communicated with a chamber by a tube. When the three-way solenoid valve connects the pressure-regulating chamber to the low-pressure chamber, a plug is urged by the high pressure, thereby permitting port A and a port B to communicate with each other, while inhibiting the port B and a port D from communicating with each other. The pressure within the chamber is increased to thereby increase the pressure within the pressure-regulating chamber. Consequently, a plug is urged by a piston to thereby inhibit the port A and a port C from communicating with each other, and permitting the port C and the port D to communicate with each other. Inversely, when the three-way solenoid valve connects the pressure-regulating chamber to the high-pressure chamber, the plug is urged by a piston to thereby inhibit the port A and the port B from communicating with each other, and permitting the port B and the port D to communicate with each other. The pressure within the chamber is reduced to thereby reduce the pressure within the pressure-regulating chamber. Consequently, the plug is urged by the high pressure to thereby permitting the port A and the port C to communicate with each other, while inhibiting the port C and the port D from communicating with each other. This makes it unnecessary to cause leakage of the refrigerant to reduce pressures within the pressure-regulating chambers.
摘要:
The object of the present invention is to provide a solenoid valve-equipped expansion valve simplified in construction. A common valve element in which a valve element of an expansion valve and a valve element of a stop valve are integrally formed as a unitary member is disposed such that the common valve element can be axially movably guided by a shaft having the driving force of a power element transmitted thereto. A first core of a solenoid, holding the common valve element, is urged by a spring such that the common valve element is seated on a valve seat. When the solenoid is energized, the first core holding the common valve element is attracted by a second core rigidly fixed to the shaft such that the common valve element operates with the shaft in an interlocked fashion. As a result, when the solenoid is deenergized, the common valve element can function as a stop valve, whereas when the solenoid is energized, the common valve element can function as an expansion valve.
摘要:
The object of the present invention is to provide a differential pressure control valve capable of preventing refrigerant from leaking along the outer periphery of a piston for actuating a main valve. An annular diaphragm has an inner peripheral edge portion clamped between a main valve piston and a fixing ring secured to the main valve piston, and an outer peripheral edge portion clamped between a body and a cylindrical member secured to the body, and the cylindrical member slidably receives the main valve piston. Thus, the outer periphery of the main valve piston is completely sealed by the diaphragm and inlet pressure P1 is introduced from a refrigerant introduction chamber into a piston chamber only through an orifice, whereby characteristics of the differential pressure control valve can be stabilized.
摘要:
The object of the present invention is to provide a method of controlling a refrigeration cycle such that maximum refrigerating capacity can be educed when the refrigeration cycle is started, the driving torque of a variable displacement compressor can be reduced when an automotive vehicle performs standing start or acceleration, and the refrigeration cycle can be operated with the maximum efficiency in a steady operating condition. Electric signals for control of a capacity control valve 5 for controlling the capacity of a variable displacement compressor and an electronic expansion valve are directly measured, and the differential pressure between a high pressure-side refrigerant pressure and a low pressure-side refrigerant pressure in the refrigeration cycle and the flow rate of refrigerant flowing therethrough are estimated based on the electric signals, whereby the energy of the refrigeration cycle is estimated, and further by using an engine rotational speed, the driving torque of the variable displacement compressor is estimated. This makes it possible to carry out energy control for as maximum refrigerating capacity operation, maximum efficiency operation, required minimum refrigerating capacity operation, and so forth, whereby it is possible to carry out not only fuel consumption saving operation but also energy control for reducing burden on the engine e.g. during idling and acceleration of the engine.
摘要:
To provide an expansion valve which permits both the assembling cost and the cost of parts to be effectively reduced by a large margin and thus is highly economical. A high-pressure refrigerant pipe, a valve casing and a low-pressure refrigerant pipe are previously formed integrally with an evaporator. At the time of assembling, an expansion valve unit having a minimum function to serve as an expansion valve is inserted into the valve casing and fixed thereto by a clip, and a distal end portion of a temperature sensing cylinder is fixed to an outlet pipe of the evaporator, thereby constructing an expansion valve. No special joints are required to connect the expansion valve unit to the high-pressure and low-pressure refrigerant pipes, and therefore, the cost of parts can be cut down. Also, since the valve casing into which the expansion valve unit is fitted is formed integrally with the high-pressure and low-pressure refrigerant pipes and the evaporator, no pipe connection is required, thus reducing the assembling cost.
摘要:
A vacuum chamber-forming method for forming a vacuum chamber in a power element of a control valve for a variable capacity compressor through a reduced number of steps. A power element is assembled in the atmospheric air by arranging a disk, a diaphragm, a disk, a spring and an upper housing on a lower housing, caulking the periphery of the lower housing to the periphery of the upper housing, and then soldering the junction of the upper and lower housings. The assembled power element is placed in a vacuum container, and a small hole formed in the upper housing is subjected to spot welding in the vacuum atmosphere, whereby the small hole is sealed by a weld metal.
摘要:
The object of the present invention is to provide a method of operating a refrigeration cycle which is capable of preventing oil from staying in an evaporator and ensures high coefficient of performance as well as sufficient circulation of oil. An electronic expansion valve is controlled such that during normal operation, refrigerant is always in a superheated state at the outlet of an evaporator, and the refrigerant is periodically forced to have negative superheat for a predetermined time by a superheat control device. Thus, during normal operation, the refrigerant sucked into a variable displacement compressor always has superheat, whereby the refrigeration cycle can operate with high coefficient of performance and an engine driving the variable displacement compressor can be operated at high fuel efficiency. Also, the refrigerant is temporarily controlled so as to have negative superheat. Accordingly, lubricating oil stayed in the evaporator can be made to flow out to the variable displacement compressor, thus making it possible to prevent the compressor from seizing due to shortage of the lubricating oil.
摘要:
The object of the present invention is to prevent refrigerant from flowing out into a vehicle compartment due to damage to an evaporator or piping associated therewith. A solenoid valve is arranged at an inlet of an evaporator, and a check valve is arranged at an outlet of the evaporator. When operation of a system is to be stopped, the solenoid valve is closed while a compressor is kept operating for a predetermined time to suck out refrigerant from the evaporator to a downstream side of the check valve, so that during stoppage of the operation, the check valve prevents the refrigerant from flowing back into the evaporator. Thus, even if the evaporator arranged in the vehicle compartment or piping associated therewith is damaged, a situation where a large amount of refrigerant flows out of the evaporator into the vehicle compartment does not occur because no refrigerant remains in the evaporator, making it possible to prevent occupants in the vehicle compartment from being put in a grave situation.
摘要:
The object of the present invention is to provide a capacity control valve for a variable displacement compressor that controls flow rate without the need for increased solenoid power. A compact, low-cost capacity control valve is provided as an integrated structure of a first control valve and a second control valve. The first control valve, placed on a passageway of refrigerant discharged from a variable displacement compressor, functions as a variable orifice whose cross-sectional area can be set as desired by varying the power of a solenoid unit. Part of the refrigerant discharged at pressure PdH is supplied to the crank chamber, in which the pressure is Pc. The second control valve controls this refrigerant flow to the crank chamber in such a way that the differential pressure between upstream pressure PdH and downstream pressure PdL of the discharged refrigerant will be regulated at a specified level. This arrangement makes it possible to reduce the size of the solenoid unit because the first control valve does not need a large force to yield a small differential pressure that is required for operation.