摘要:
A gas diffusion electrode is constituted by forming a porous layer comprising a super-fine particle catalyst of silver or gold and a fluorine-containing material on a substrate and connecting a gas-liquid permeable collector to the substrate. The gas diffusion electrode can be used stably as an oxygen cathode for a sodium chloride electrolysis, etc., for a long period of time without causing decreased water repellency of the fluorine-containing material in the gas diffusion electrode and without lowering the activity of the electrode substance.
摘要:
A salt water electrolysis process for electrolyzing an aqueous alkali chloride solution capable of preventing the deterioration of a gas diffusion cathode is disclosed. A cation-exchange membrane having closely disposed to one surface thereof an insoluble metal anode and having closely adhered or mechanically attached to the opposite surface thereof a liquid permeable gas diffusion cathode is disposed in an electrolytic cell, and electrolysis is carried out while supplying salt water to the anode chamber and an oxygen-containing gas containing water as steam or fine water droplets to the cathode chamber, and an alkali hydroxide is obtained from the cathode chamber. The water-containing gas directly reaches the gas diffusion cathode and since the alkali hydroxide and the alkali carbonate formed at the surface of the cathode are dissolved in the water in the gas and removed from the electrolytic cell, deterioration of the gas diffusion cathode can be prevented.
摘要:
The electrolytic cell 1 for producing alkali hydroxide or hydrogen peroxide is divided into the anode compartment 3 and the cathode compartment 4 by the cation exchange membrane 2. The cathode compartment 4 is further divided by the anion exchange membrane 6 into the solution compartment 7 containing a concentrated aqueous solution of alkali hydroxide and the gas compartment accommodating the gas cathode 8. The anion exchange membrane 6 prevents the gas cathode 8 from coming into direct or indirect contact with the aqueous solution of alkali hydroxide. This leads to the extended life of the gas cathode. The above-mentioned arrangement is effective in large-sized electrolytic cells. Thus, the present invention can be applied to industrial electrolysis which has never been achieved with the conventional gas electrode.
摘要:
Electrolysis is carried out while supplying an aqueous sodium chloride solution having a weak acidic property to the anode chamber of a water electrolytic cell. The electrolytic cell is partitioned with a cation-exchange membrane into an anode chamber and a cathode chamber. Furthermore, because the pH of the anolyte is sufficiently reduced due to the acid content and pH of the liquid supplied to the anode chamber from the start of electrolysis, which is different from a conventional electrolytic method, the electrolysis of the present invention may be carried out for a time needed to obtain a sufficiently high oxidation reduction potential. Thus, acid water almost the same as that obtained in a conventional method is obtained in the present invention by consuming about {fraction (1/10)} the electric power that is used in a conventional method.
摘要:
An electrolytic cell for the production of acid water which performs simple operation to produce acid water without complicated control over the concentration of hydrochloric acid to be added or precipitation of alkaline earth metal salts, which are disadvantages of the prior art electrolysis for the production of acid water. An electrolytic cell for the production of acid water, which comprises a power supply for applying a voltage across an anode chamber and a cathode chamber partitioned by an ion-exchange membrane. The anode in the anode chamber is disposed in close contact with the ion-exchange membrane. The electrolytic cell further comprises means for supplying an aqueous solution of hydrochloric acid and water to the cathode chamber and the anode chamber, respectively. Hydrochloric acid is not directly added to the anode chamber but indirectly added to the anode chamber by diffusing through the ion-exchange membrane. In this manner, hydrochloric acid is uniformly dispersed into the anode chamber by diffusing through the ion-exchange membrane. Thus, the need for controlling concentration is eliminated. Furthermore, because both the catholyte and anolyte are kept acidic, no precipitation of metal salts occurs.
摘要:
An electrolytic apparatus which comprises effecting electrolysis of an electrolytic solution in an electrolytic chamber separated from a reaction chamber by a hydrogen-storing metal member with one surface of the hydrogen-storing metal member as a cathode opposing an anode so that hydrogen thus produced is adsorbed by the hydrogen-storing metal member while allowing hydrogen thus adsorbed and a material to be treated to undergo continuous catalytic reaction in the reaction chamber on the other surface of the hydrogen-storing metal member to cause hydrogenation or reduction reaction by hydrogen thus adsorbed, wherein an electrolytic apparatus having a porous catalyst layer provided on the catalytic reaction surface of the hydrogen-storing metal member is used.
摘要:
A zero-gap type electrolytic cell 11 characterized as having a hydrophilic liquid-permeable material 16 interposed between an ion-exchange membrane 12 and a gas diffusion cathode 17. The reaction product passes through the liquid-permeable material and disperses toward edges of the liquid-permeable material before being withdrawn. Hence, the withdrawal direction for the target reaction product is not opposite the feed direction for the reactant gas.
摘要:
A method for producing ozone which comprises electrolyzing water using a fluororesin-type ion-exchange membrane as a solid electrolyte thereby to generate an ozone-containing gas, and cooling the gas thereby to remove a fluorine-containing substance present in the gas generated.
摘要:
The present invention is directed toward an electrolytic ozonier for treating ozone-containing waste gas and a method of treating ozone-containing waste gas using the ozonier, wherein the method includes evolving oxygen and ozone in an anode compartment of an electrolytic cell by electrolysis of water while evolving hydrogen in a cathode compartment; directing the evolved hydrogen into a waste gas treating section that contains a waste gas decomposition catalyst so as to convert the hydrogen to a harmless form by means of the catalyst; bringing the oxygen and ozone into contact with a medium to be treated in an ozone contactor so as to treat the medium; and subsequently directing waste gas containing oxygen and ozone produced as a result of treatment of the medium into the waste gas treating section where they are brought into either direct or indirect contact with the catalyst so that the ozone in the waste gas is converted into a harmless form.
摘要:
A method and apparatus for water treatment is described, using electrolytic zone, which comprises electrolyzing water to generate an ozone-containing gas in the anode compartment of an electrolytic cell, separating the ozone-containing gas from the anolyte, and contacting the separated ozone-containing gas with the water to be treated said water to be treated being different than the water for electrolysis.