摘要:
A nozzle plate of the invention has nozzle opening including a taper part 2 for guiding ink in a pressure generation chamber and a straight pore part 3 formed contiguous with the taper part.
摘要:
An ink jet recording apparatus includes a color ink recording head 6 having nozzle openings Nc arranged at pitch Pc in a paper feed direction as N×P (N is an integer of four or more being not a prime number) when pitch of dots required for print is P, and a black ink recording head 5 having m nozzle openings Nb1 (m is a divisor of two or more, of N) arranged at pitch Pb1 in the paper feed direction as P and nozzle openings Nb2 arranged at pitch Pb2 in the paper feed direction as {N−(m−1)}P. Paper feed is executed in units of mP and image data is printed by the color ink recording head 6 and text data is printed by the black ink recording head 5 at the same time. Accordingly, the text data and the image data existing in the same path can be printed at their respective optimum resolutions.
摘要:
Three nozzle arrays respectively including a plurality of nozzle orifices 23 are provided. Two of the nozzle arrays are divided into a plurality of nozzle blocks NB1 to NB6. One of the nozzle arrays is provided as a unit nozzle block NB7. Different kinds of inks to be ejected are allocated with respect to each nozzle blocks. Dye-family colored inks are ejected from the respective divided nozzle blocks. Pigment-family black ink is ejected from the unit nozzle block.
摘要:
A piezo-electric/electrostrictive film type chip (50) includes: a ceramic substrate (70) having a spacer plate (74) having a windows-disposed pattern (100) having a plurality of window portions (75) and a thin closure plate (72) for closing the window portions (75) which is unitarily connected with the spacer plate; and a piezo-electric/electrostrictive working portion (71) having a lower electrode (81), a piezo-electric/electrostrictive layer (82), and an upper electrode (83), each being formed in the form of a layer and laminated in this order at a closure portion of the window (75) on the outer surface of the closure plate (72) by a film formation method. A pin hole (52) for positioning is formed in or near the center of gravity of the windows-disposed pattern (100). Deterioration of positional preciseness of the pin hole and a through hole of the piezo-electric/electrostrictive actuator can be minimized, and the piezo-electric/electrostrictive actuator can be unitarily connected with an ink nozzle member with high positional preciseness.
摘要:
Pressure generating units 1, 2 are formed so as to be inclined at an angle .theta. with respect to pressure generating chamber 4, 5 arraying lines. A plurality of pressure generating units are fixed to a passage unit 6 so as to be shifted in such a manner that the plurality of pressure generating units neighbor at end faces in a pressure generating chamber 4, 5 arraying direction and in such a manner that a pressure generating chamber 4, 5 arraying pitch between the confronting pressure generating units 1, 2 becomes equal to a pressure generating chamber 4, 5 arraying pitch designed for a pressure generating unit. Further, such pressure generating units 1, 2 are arranged in a plurality of arrays A, B, C in a recording head moving direction, and reservoirs 8, 9 are formed so as to cross over the pressure generating units 1, 2 per each of the plurality of arrays A, B, C. Ink introducing ports 11, 12 are formed at stepped portions in a boundary region between the pressure generating units 1, 2.
摘要:
An ink supply port forming substrate 21, a common ink chamber forming substrate 25, and a nozzle plate 27 are bonded together, by inserting between them thermally fusible films 31and 32 respectively, in which are formed through holes 45 and 45 at two or more positions, and by also filling the film through holes with an adhesive that is mixed with a gap material G for adjusting the thicknesses of the thermally fusible films when they are fused, so as to form a flow path unit 30; and then the flow path unit 30 and the actuator units 1 are bonded together by inserting between them a thermally fusible film 33, in which are through holes 64 at two or more positions, and by also filling the through holes with an adhesive that is mixed with a gap material G for adjusting the thickness of the thermally fusible film when it is fused. In this structure, the extruded quantity of the thermally fusible films can be received by the through holes 45 and 64, and the gap materials G can prevent the thermally fusible films from being unnecessarily spread out.
摘要:
A method of manufacturing an ink jet head including the steps of: laminating a dry film photoresist 51 on an inner surface of a nozzle plate 2, the dry film photoresist being a photohardening resin; exposing the photoresist 51 with such energy as to half-harden the photoresist while superposing thereon a photomask M1 having a predetermined masking pattern; developing the thus exposed photoresist 51; laminating a photoresist 52; secondarily exposing the photoresists 51, 52 to form a partially hardened portion 5C; bonding an elastic plate on the portion 5C; and integrating the bonded plates while hardening them by heating.
摘要:
An ink jet print head in which a portion along which both piezoelectric conversion elements and a nozzle forming member are adhesively fixed is positioned at least a distance exceeding that of a stress concentration region toward a base portion of the piezoelectric conversion elements from a vibrating fulcrum of the piezoelectric conversion elements. As a result, any thermally induced stress concentration in the piezoelectric conversion elements is diffused over the adhesively fixed stress that acts backward of such stress concentration region. This prevents each piezoelectric conversion element from being deformed, thereby contributing to eliminating variations in the nozzle gap.
摘要:
An ink jet recording apparatus in which a nozzle ink jet recording head provided with a nozzle plate provided with apertures for jetting an ink droplet and a capping device provided with a cap unit for sealing the apertures of the nozzle plate when the recording apparatus is not used are mounted, in which in the cap unit of the capping device, in a sealed state, an ink suction port for supplying negative pressure for exhausting ink from a nozzle aperture if necessary is arranged at the bottom and an atmospheric air open port for releasing negative pressure is arranged on one side and in which a porous plate provided with plural through holes for adjusting the distribution of pressure in the longitudinal direction of the cap unit is housed between the inner bottom face and the upper open face of the cap unit and further, an ink suction method of a recording head are provided.