Abstract:
Address resolution information acquisition (ARIA) for a computing device is described. In some examples, ARIA includes a computing device (e.g., an Internet of things (IoT) node, a gateway, a server) determining, without use of an address resolution protocol (ARP), address resolution information of one or more other computing devices (e.g., a IoT node, a gateway, a server). In one example, the computing device uses data flowing to or from its application layer, transport layer, or network layer to determine address resolution information of another computing device. The address resolution information can comprise one or more of a link layer address (e.g., a media access control (MAC) address) and an Internet layer address (e.g., an Internet protocol (IP) address). Usage of a cache for storing or deleting address resolution information can also be part of ARIA.
Abstract:
A Wi-Fi device includes a controller coupled to a writeable memory implementing a MAC and PHY layer and to a transceiver. Connection data stored in the writeable memory includes Wi-Fi connection parameters including ≥1 router MAC level information or a most recently utilized (MRU) channel used, and IP addresses including ≥1 of an IP address of the Wi-Fi device, IP address of the MRU router, an IP address of a MRU target server, and an IP address of a network connected device. An accelerated reconnecting to a Wi-Fi network algorithm is implemented by the processor is for starting from being in a network disconnected state, establishing current connection parameters for a current Wi-Fi network connection using the Wi-Fi connection parameters for at least one MAC layer parameter for the MAC layer.
Abstract:
Address resolution information acquisition (ARIA) for a computing device is described. In some examples, ARIA includes a computing device (e.g., an Internet of things (IoT) node, a gateway, a server) determining, without use of an address resolution protocol (ARP), address resolution information of one or more other computing devices (e.g., a IoT node, a gateway, a server). In one example, the computing device uses data flowing to or from its application layer, transport layer, or network layer to determine address resolution information of another computing device. The address resolution information can comprise one or more of a link layer address (e.g., a media access control (MAC) address) and an Internet layer address (e.g., an Internet protocol (IP) address). Usage of a cache for storing or deleting address resolution information can also be part of ARIA.
Abstract:
Systems and methods for enabling proximity operations with long-range wireless communication interfaces are described. In an illustrative, non-limiting embodiment, a method may include transmitting a plurality of data packets using a WiFi interface of a first device, where each data packet has a signal strength following a predetermined pattern; and receiving an indication, via the WiFi interface, of whether the predetermined pattern has been identified by a second device.
Abstract:
A dual platform communication controller, a method of controlling communication of data packets based on different communication standards and a wireless transceiver. In one embodiment, the dual platform communication controller includes: (1) a signal interpreter configured to recognize first data packets based on a first communication standard and second data packets based on a second communication standard and (2) a traffic manager coupled to the signal interpreter and configured to dynamically control communication of the second data packets including active second data packets and allocate bandwidth for communication of the first and second data packets.
Abstract:
A dual platform communication controller, a method of controlling communication of data packets based on different communication standards and a wireless transceiver. In one embodiment, the dual platform communication controller includes: (1) a signal interpreter configured to recognize first data packets based on a first communication standard and second data packets based on a second communication standard and (2) a traffic manager coupled to the signal interpreter and configured to dynamically control communication of the second data packets including active second data packets and allocate bandwidth for communication of the first and second data packets.