摘要:
Implantable electrodes for defibrillation are formed of pluralities of electrode segments. Each of the segments is relatively long and narrow. The electrode segments can be parallel and spaced apart from one another a distance at least ten times the nominal width, with one end of each segment mounted to a transverse distal portion of an electrically conductive lead coupling the electrode to a defibrillation pulse generator. Alternatively, segments can branch or radiate outwardly from a common junction. In yet another arrangement, electrode segments are portions of a single conductive path at the distal end of a lead from a pulse generator, arranged in either a spiral configuration or a serpentine configuration which can align electrode segments side by side, parallel and spaced apart. The electrode segments can be formed of composite conductors in the form of titanium ribbons or wires with a sputtered outer layer of platinum, or a silver core in a stainless steel tube, with a platinum layer formed onto the tube. The electrodes are highly compliant yet can provide large effective areas for defibrillation, enabling a transthoracic pulsing arrangement of two electrodes on opposite sides of the heart, implanted subcutaneously outside of the thoracic region.
摘要:
A cardioversion/defibrillation system employing a dual biphasic and multi-electrode discharge technique for effectively defibrillating the heart by creating a voltage gradient throughout substantially all of the heart which is above a critical voltage gradient while delivering a minimum energy shock. Effective cardioversion/defibrillation is accomplished by delivering two shocks to the heart. The first shock is at an energy level lower than that typically necessary to cardiovert/defibrillate the heart alone, and is applied between a first pair of cardioversion/defibrillation electrodes. The second shock is at an energy less than the first shock and is applied between a second pair of electrodes to shock the area of the myocardium provided with an inadequate voltage gradient from the first shock. The voltage gradient in the low gradient areas is boosted above the minimum gradient necessary to defibrillate. Thus, substantially the entire myocardium is depolarized by a voltage gradient above the critical voltage gradient, but with the total shock strength of the first and second shocks being substantially reduced.
摘要:
Implantable electrodes for defibrillation are formed of pluralities of electrode segments. Each of the segments is relatively long and narrow. The electrode segments can be parallel and spaced apart from one another a distance at least ten times the nominal width, with one end of each segment mounted to a transverse distal portion of an electrically conductive lead coupling the electrode to a defibrillation pulse generator. Alternatively, segments can branch or radiate outwardly from a common junction. In yet another arrangement, electrode segments are portions of a single conductive path at the distal end of a lead from a pulse generator, arranged in either a spiral configuration or a serpentine configuration which can align electrode segments side by side, parallel and spaced apart. The electrode segments can be formed of composite conductors in the form of titanium ribbons or wires with a sputtered outer layer of platinum, or a silver core in a stainless steel tube, with a platinum layer formed onto the tube. The electrodes are highly compliant yet can provide large effective areas for defibrillation, enabling a transthoracic pulsing arrangement of two electrodes on opposite sides of the heart, implanted subcutaneously outside of the thoracic region.
摘要:
A defibrillation electrode for implantation in the region of the heart and for connection to a defibrillation system. The electrode comprises multiple independent conductive segments spaced apart for defining a discharge surface of the electrode. In one embodiment, the electrode comprises a plurality of concentric conductive rings electrically connected together. To smooth the current distribution, the interface impedance of the inner conductive segments is made lower than that of the outer conductive segments. In one embodiment, the impedance is determined by the choice of the conductive material. In another embodiment, the impedance is determined by texturing the surface of the conductive segments. In yet another embodiment, the impedance is determined by the ratio of conductive edges to surface of the conductive segment. The discharge surface region can also take the form of a portion of a cardiac catheter.Other ways to control the current distribution include the use of a floating conductive segment, and the use of discrete segments which receive defibrillating waveforms of different amplitudes and isolating the conductive segments to deliver higher amplitude waveforms to the inner segments than the outer segments.
摘要:
A defibrillation electrode for implantation in the region of the heart and for connection to a defibrillation system. The electrode comprises multiple independent conductive segments spaced apart for defining a discharge surface of the electrode. In one embodiment, the electrode comprises a plurality of concentric conductive rings electrically connected together. To smooth the current distribution, the interface impedance of the inner conductive segments is made lower than that of the outer conductive segments. In one embodiment, the impedance is determined by the choice of the conductive material. In another embodiment, the impedance is determined by texturing the surface of the conductive segments. In yet another embodiment, the impedance is determined by the ratio of conductive edges to surface of the conductive segment. The discharge surface region can also take the form of a portion of a cardiac catheter.Other ways to control the current distribution include the use of a floating conductive segment, and the use of discrete segments which receive defibrillating waveforms of different amplitudes and isolating the conductive segments to deliver higher amplitude waveforms to the inner segments than the outer segments.
摘要:
An implantable cardiac electrode includes a flexible polymeric substrate, a metallized surface layer of the polymeric substrate forming one or more electrically conductive regions on the surface of the polymeric substrate, and one or more insulated conductors connecting the electrically conductive regions to leads, the leads being connected to a cardiac monitoring and pulse generating system. In one embodiment, the electrically conductive region forms a band on the outer surface of a polymeric tube and is electrically connected to a conductor embedded in the tube. In another embodiment, the electrically conductive region forms a desired configuration on a planar surface of the polymeric substrate, such as a concentric ring or spiral patch configuration. In these and other embodiments, the metallized surface layer includes a surface layer of the polymeric substrate that is impregnated with a metal such that a conductive region is formed in the surface of the otherwise insulative polymeric substrate.
摘要:
A novel method and apparatus for isolating and anchoring an implantable electrically stimulating probe such as a defibrillator patch electrode for use with an automatic cardioverter/defibrillator is disclosed in which a porous bio-compatible coating or enclosure covers and isolates the electrode in a way which allows electrical conductivity via bodily fluid which passes through but separates the electrode from the adjacent tissue in the manner of dissection plane which substantially prevents tissue ingrowth. The coating or enclosure controls the minimum separation distance from the closest tissue and which reduces the local current density applied to adjacent tissue when the electrode is pulsed. The system includes a provision for attaching the enclosure means to internal bodily tissue.
摘要:
A pulse generator housing for enclosing and containing pulse generator defibrillation circuitry. The housing is formed entirely of electrically conductive metal defining an electrically conductive outer surface which is connected to the pulse generator circuitry for delivering defibrillating energy to the heart. The pulse generator housing is implanted in the pectoral region proximate the heart with the conductive surface facing the heart. Regions of the conductive outer surface may be electrically isolated and dedicated for separately sensing and shocking. The outer surface may be coated with platinum. Additional coiled segment electrodes may extend from the housing and be electrically connected to the conductive outer surface so as to increase the effective conductive surface area. A sensor is provided to determine whether the housing is inside or outside a body of a patient to disconnect the pulse generator housing conductive surface from the pulse generator circuitry when the unit is outside the body of a patient.
摘要:
Body-implantable leads with open, unbacked (uninsulated) electrode structures having electrical discharge surfaces formed by conductive elements, such as mesh and braid, and preferably coils. The electrode structures can be classified by pattern: (1) loops, (2) linear arrays and (3) radial arrays. The electrodes are located on or near the epicardial surface of the right and left heart.
摘要:
A body implantable cardioversion/defibrillation device includes an electrically conductive lead, three lead extensions coupled to the lead through a junction body, and an electrode array consisting of three electrodes, one electrode being coupled to each of the lead extensions. Each electrode has several separate electrically conductive paths, including a primary conductor in the form of a helically wound coil, and a linear shunt conductor in the form of a cable surrounded by the primary coil. The shunt cable is a composite, including a DBS core surrounded by an insulative coating. A dielectric sheath surrounds the shunt cable, preventing the cable from contacting the primary coil and isolating the shunt cable from contact with body tissue or body fluids. At each end of each electrode is a connector structure including a shunt connector attached to an end of the shunt cable, and an outer coil connector surrounding an end of the primary coil and the shunt connector. Both connectors are crimped to maintain the electrical and mechanical coupling. The junction body includes an electrically conductive plate having several bores directed inwardly into the plate. A thin wall portion on one side of each bore can be crimped following insertion of each lead or lead extension, to secure the electrical and mechanical connection.