Abstract:
A chip resistor includes a resistive element (1), an insulation layer (4) formed in a back surface of the flat surface, and two electrodes (3) spaced from each other via the insulation layer. Each electrode (3) makes contact with the insulation layer (4). Each electrode (3) has a lower surface formed with a solder layer (39).
Abstract:
A chip resistor (R1) includes a resistor element (1) having a first surface (1a) and a second surface (1b) opposite to the first surface. Two main electrodes (21), spaced from each other, are provided on the first surface (1a), while two auxiliary electrodes (22), spaced from each other, are provided on the second surface (1b). The auxiliary electrodes face the main electrodes (21) via the resistor element (1). The main electrodes (21) and the auxiliary electrodes (22) are made of the same material.
Abstract:
A chip resistor (R1) includes a resistor element (1) having a first surface (1a) and a second surface (1b) opposite to the first surface. Two main electrodes (21), spaced from each other, are provided on the first surface (1a), while two auxiliary electrodes (22), spaced from each other, are provided on the second surface (1b). The auxiliary electrodes face the main electrodes (21) via the resistor element (1). The main electrodes (21) and the auxiliary electrodes (22) are made of the same material.
Abstract:
A chip resistor having a highly accurately adjusted low resistance value is obtained. The chip resistor having a vertically three-layered structure is obtained by forming a first electrode 1A by printing paste for an electrode on an insulating substrate 5 and drying it, a resistor layer 3 by printing paste for a resistor on the first electrode 1A and drying it, a second electrode 1B by printing paste for an electrode on the resistor layer 3 and the insulating substrate 5 and baking it. Trimming is applied to the thus fabricated chip resistor so as to adjust a resistance value to a given value.
Abstract:
A method of making a chip resistor is provided. According to this method, an aggregate board is first prepared which includes a first region and a second region which are spaced from each other via an excess portion. Then, a conductor pattern is formed which extends to bridge the first region and the second region. Subsequently, a resistor element is formed in each of the first region and the second region for connection to the conductor pattern. Then, the aggregate board is cut at the excess portion. The conductor pattern includes a thinner-walled portion extending across the excess portion and a thicker-walled portion connected to the thinner-walled portion and spaced from the excess portion.
Abstract:
The chip resistor (1) of the present invention includes a pair of terminal electrodes (4, 5) provided at ends of an insulating substrate (2) in the form of a chip, and a resistor film (3) formed on the upper surface of the insulating substrate (2) for electrical connection to the paired terminal electrodes (4, 5) and formed with a trimming groove (3a) for setting the resistance. The paired terminal electrodes (4, 5) include a lower electrode (4b) formed on the lower surface of the insulating substrate (2). The lower electrode (4b) extends up to a position directly below a narrower portion (8) of the resistor film (3) which has a relatively small width due to the formation of the trimming groove (3a) in the resistor film (3).
Abstract:
A chip resistor includes a metal resistor element having a flat lower surface. The lower surface is formed with two electrodes spaced from each other, and an insulating resin film is formed between these electrodes. Each of the electrodes partially overlaps the insulating film so that a portion of the insulating film is inserted between each of the electrodes and the lower surface of the resistor element.
Abstract:
A chip resistor includes a resistor element in the form of a chip, and at least two electrodes formed on the resistor element. The resistor element includes an upper surface, a lower surface, and two end surfaces extending between the upper and the lower surfaces and spaced from each other. The two electrodes are provided on the lower surface of the resistor element. Each of the end surfaces of the resistor element is formed with a conductor film integrally connected to a corresponding one of the electrodes. The conductor film is made of copper, for example, and is higher in solder-wettability than the resistor element.
Abstract:
A chip resistor (A1) includes a resistor element (1) including an electrode forming surface (10b), two electrodes (3) provided at the electrode-forming surface (10b), and an insulating layer (2A) provided at the electrode-forming surface (10b). The electrode-forming surface (10b) includes an inter-electrode region positioned between the two electrodes (3) and covered by the insulating layer (2A). The insulating layer (2A) has a thickness (t2) which is equal or generally equal to the thickness (t1) of the electrodes (3).
Abstract:
A chip resistor includes a metal resistor element having a flat lower surface. The lower surface is formed with two electrodes spaced from each other, and an insulating resin film is formed between these electrodes. Each of the electrodes partially overlaps the insulating film so that a portion of the insulating film is inserted between each of the electrodes and the lower surface of the resistor element.