Abstract:
A cable backplane system includes a backplane having a plurality of openings extending between a front and a rear of the backplane. The backplane has mounting locations proximate the openings. Mounting blocks are coupled to the front of the backplane at corresponding mounting locations. The mounting blocks are secured to the backplane by fasteners. A cable rack is coupled to the rear of the backplane and has a tray with a frame surrounding a raceway and spacers coupled to the tray. The spacers hold corresponding cable connectors and are secured to corresponding mounting blocks to position the spacers and cable connector assemblies relative to the backplane. The cable connectors are received in corresponding openings in the backplane and are held in position relative to the backplane by the spacers and mounting blocks.
Abstract:
A cable backplane system includes a backplane and a chassis supporting the backplane. A cable rack is coupled to the chassis and backplane. The cable rack includes upper trays and lower trays each having a frame and cable connector assemblies held by the corresponding frame. The upper trays have upper tray guides configured to interact with corresponding upper chassis guides on the upper support for supporting the upper trays relative to the backplane. The lower trays have lower tray guides configured to interact with corresponding lower chassis guides on the lower support for aligning the lower trays to the backplane. The upper trays have upper hanging guides and the lower trays have lower hanging guides coupled to corresponding upper hanging guides to support the lower trays with the corresponding upper trays relative to the backplane.
Abstract:
A cable backplane system includes a backplane having a plurality of openings therethrough and a cable rack coupled to a rear of the backplane. The cable rack includes a tray having a frame surrounding a raceway and a brick held by the tray. The brick has side spacers at opposite sides of the brick and plates coupled to the side spacers that support a plurality of cable connector assemblies. Each cable connector assembly is positioned between and supported by corresponding plates on opposite sides of the cable connectors with the cable connectors positioned in corresponding openings in the backplane. The plates each include a hem folded over at a rear of the plate. The hem has an edge positioned rearward of the cable connectors and supporting the cable connectors from retreating from the openings in the backplane.
Abstract:
Daughter card assembly including a circuit board and leading and trailing connectors mounted to the circuit board. The leading and trailing connectors have mating ends that face in different directions along a board plane. The daughter card assembly also includes a support wall that is coupled to the circuit board and extends orthogonal to the circuit board. The support wall has a wall opening therethrough. The trailing connector is positioned on the circuit board such that the mating end substantially aligns with the wall opening. The daughter card assembly also includes a retention shroud that projects from an exterior surface of the support wall. The retention shroud defines a shroud passage that aligns with the wall opening. The shroud and wall openings form a receiving passage for receiving at least one of the trailing connector or a corresponding cable connector that mates with the trailing connector.
Abstract:
An electrical connector system includes a panel having a plurality of connector openings and a plurality of vent openings interspersed among the connector openings. Cable connectors are coupled to the panel and extend at least partially into the connector openings. The cable connectors have mating interfaces presented at the front for mating with mating connectors and the cable connectors have cables extending from cable ends of the cable connectors and located rearward of a rear of the panel. Air funnels are coupled to the panel at corresponding vent openings. The air funnels extend rearward of the rear of the panel. The air funnels route the cables clear of the space rearward of the vent openings to define an unimpeded flow path through the vent openings.
Abstract:
A cable backplane system includes a backplane having a plurality of openings and mounting blocks proximate the openings. A cable rack is coupled to a rear of the backplane that includes a tray, spacers coupled to the tray and cable connector assemblies held by corresponding spacers. Each cable connector assembly has a plurality of cables extending between cable connectors. The cable connectors are received in corresponding openings and held in position relative to the backplane by the spacers. Locking assemblies are held by the tray and have a latch proximate to a front edge of the tray configured to interact with a corresponding one of the mounting blocks to lockably couple the tray to the backplane. The locking assemblies each have an actuator at a rear of the tray that is actuated by an installer to lock and unlock the latch with the mounting block.
Abstract:
A cable backplane system includes a backplane and a cable rack coupled to the backplane. The cable rack includes first and second trays having first and second frames. A plurality of cable connector assemblies are held by the cable rack each having a plurality of cables extending between a first cable connector and a second cable connector. The first cable connector is coupled to the first frame and the second cable connector is coupled to the second frame with the cables routed in first and second raceways of the first and second trays. Float mechanisms are connected between the first and second frames that allow limited movement between the first and second trays. The float mechanisms allow alignment of the cable connectors with corresponding openings in the backplane.
Abstract:
Electrical connector including a module assembly having a contact module. The contact module has a module body and signal conductors held by the module body. The module assembly has a shroud-engaging face. The signal conductors have respective signal members disposed along the shroud-engaging face. The electrical connector also includes a connector shroud that couples to the module assembly. The connector shroud has a mating side, a loading side, and a mating axis extending therebetween. The connector shroud includes contact passages that extend therethrough. The loading side interfaces with the shroud-engaging face. The connector shroud couples to the module assembly in first or second rotational positions about the mating axis. The contact passages align with the signal members for each of the first and second rotational positions.
Abstract:
A cable assembly for a cable backplane system includes a tray having a frame and spacer assemblies coupled to the frame that hold cable tray connectors in fixed positions relative to the frame. Each cable tray connector has a housing holding a plurality of contacts and cables extending rearward from the corresponding housing. The housings are configured to be received in corresponding openings in a backplane of the cable backplane system. A flexible cable harness extends from the tray. The flexible cable harness has a flexible shield electrically coupled to the frame and a harness connector electrically connected to at least one corresponding cable tray connector. At least some of the cables are routed from the tray through the flexible shield to the harness connector. The flexible shield provides electrical shielding for the cables. The harness connector is variably positionable relative to the tray.
Abstract:
Electrical connector including a connector body having a mating side with a communication array of signal and ground contacts and first and second mounting sides with respective mounting arrays of signal and ground contacts. Each of the first and second mounting sides is configured to be mounted to a corresponding circuit board. The connector body includes signal and ground conductors that extend through the connector body and communicatively couple the communication array to each of the mounting arrays. The mating side faces along a mating axis and the first and second mounting sides face in opposite directions along a mounting axis. The mating and mounting axes are perpendicular to each other.