Abstract:
Communication system including a support frame having a pair of spacer walls that oppose each other. The spacer walls defines a receiving gap directly therebetween. The communication system also includes a floatable connector assembly including a connector module and a communication cable coupled to the connector module. The connector module is configured to engage a mating module along a central axis to establish a communicative connection. At least a portion of the connector assembly is disposed between the spacer walls within the receiving gap. The communication system also includes a positioning gasket having a plurality of alignment members that directly engage at least one of the connector assembly or the support frame. The alignment members permit the connector assembly to float with respect to the support frame during the mating operation in a direction that is transverse to the central axis.
Abstract:
A connector brick for a cable communication system includes a header frame including end spacers and side spacers defining a header opening. The header frame is configured for mating with a circuit card. A plurality of cable connectors are received in the header opening and connected to the header frame. Each cable connector has cables extending therefrom. Each cable connector has a header holding signal contacts at a mating end of the header and configured for mating with a corresponding card connector of the circuit card. Float mechanisms extend from the header frame. The float mechanisms allow limited movement in at least two directions of the header frame. The float mechanisms allow alignment of the header frame with the circuit card. The cable connectors float with the header frame as a unit for mating with the corresponding card connectors.
Abstract:
Cable assembly including a cable harness having insulated wires, a shielding layer that surrounds the insulated wires, and a protective jacket that surrounds the shielding layer. The shielding layer includes an exposed portion that clears an end of the protective jacket. The cable assembly also includes an assembly housing having an internal cavity and a loading passage that provides access to the internal cavity. The exposed portion of the shielding layer is positioned within the loading passage. The insulated wires extend through the internal cavity and are terminated to corresponding electrical contacts of a contact assembly. The cable harness includes an adhesive layer that is coupled to the exposed portion. The adhesive layer is engaged with an interior surface of the assembly housing along the loading passage. The adhesive layer includes a conductive thermoplastic material that electrically couples the shielding layer to the assembly housing.
Abstract:
An electrical connector system includes a panel having a plurality of connector openings and a plurality of vent openings interspersed among the connector openings. Cable connectors are coupled to the panel and extend at least partially into the connector openings. The cable connectors have mating interfaces presented at the front for mating with mating connectors and the cable connectors have cables extending from cable ends of the cable connectors and located rearward of a rear of the panel. Air funnels are coupled to the panel at corresponding vent openings. The air funnels extend rearward of the rear of the panel. The air funnels route the cables clear of the space rearward of the vent openings to define an unimpeded flow path through the vent openings.
Abstract:
A connector brick for a cable communication system includes a header frame including end walls and side walls defining a header opening. The header frame is configured for mating with at least one circuit card. A plurality of cable connectors are received in the header opening. Each cable connector has cables extending therefrom and each cable connector has a header holding signal contacts at a mating end of the header and configured for mating with a corresponding card connector of the corresponding circuit card. Cable connector mounts are coupled to the end walls and extend into the header opening. The cable connector mounts engage corresponding cable connectors to secure the cable connectors in the header opening.
Abstract:
A cable assembly for a cable backplane system includes a tray having a frame and spacer assemblies coupled to the frame that hold cable tray connectors in fixed positions relative to the frame. Each cable tray connector has a housing holding a plurality of contacts and cables extending rearward from the corresponding housing. The housings are configured to be received in corresponding openings in a backplane of the cable backplane system. A flexible cable harness extends from the tray. The flexible cable harness has a flexible shield electrically coupled to the frame and a harness connector electrically connected to at least one corresponding cable tray connector. At least some of the cables are routed from the tray through the flexible shield to the harness connector. The flexible shield provides electrical shielding for the cables. The harness connector is variably positionable relative to the tray.
Abstract:
A connector brick for a cable communication system includes a header frame including end walls and side walls defining a header opening. The header frame is configured for mating with at least one circuit card. A plurality of cable connectors are received in the header opening. Each cable connector has cables extending therefrom and each cable connector has a header holding signal contacts at a mating end of the header and configured for mating with a corresponding card connector of the corresponding circuit card. Cable connector mounts are coupled to the end walls and extend into the header opening. The cable connector mounts engage corresponding cable connectors to secure the cable connectors in the header opening.
Abstract:
A cable assembly for a cable backplane system includes a tray having a frame and spacer assemblies coupled to the frame that hold cable tray connectors in fixed positions relative to the frame. Each cable tray connector has a housing holding a plurality of contacts and cables extending rearward from the corresponding housing. The housings are configured to be received in corresponding openings in a backplane of the cable backplane system. A flexible cable harness extends from the tray. The flexible cable harness has a flexible shield electrically coupled to the frame and a harness connector electrically connected to at least one corresponding cable tray connector. At least some of the cables are routed from the tray through the flexible shield to the harness connector. The flexible shield provides electrical shielding for the cables. The harness connector is variably positionable relative to the tray.
Abstract:
A cable header connector includes a contact module having a support body and a plurality of cable assemblies held by the support body and arranged in a column. The cable assemblies each have a contact terminated to a cable and a ground shield coupled to and providing electrical shielding for the contact sub-assembly. The support body has contact channels extending along respective contact channel axes which are parallel to each other, and at least one cable channel intersecting the contact channels. The cables extend through the contact channels and through the at least one cable channel to an outside of the support body. The cables emerging from the support body at corresponding cable exits at respective angles to the contact channel axes.
Abstract:
An electrical connector system includes a panel having a plurality of connector openings and a plurality of vent openings interspersed among the connector openings. Cable connectors are coupled to the panel and extend at least partially into the connector openings. The cable connectors have mating interfaces presented at the front for mating with mating connectors and the cable connectors have cables extending from cable ends of the cable connectors and located rearward of a rear of the panel. Air funnels are coupled to the panel at corresponding vent openings. The air funnels extend rearward of the rear of the panel. The air funnels route the cables clear of the space rearward of the vent openings to define an unimpeded flow path through the vent openings.