Abstract:
An electrical connector includes a housing having a first end and a second end with a mating slot formed between the first and second ends configured to receive a mating connector having contact pads. A leadframe assembly is disposed in the housing. The leadframe assembly has a contact array including ground contacts and signal contacts interspersed between corresponding ground contacts. The leadframe assembly has an overmold body supporting the ground and signal contacts. The overmold body has lossy ground absorbers coupled to corresponding ground contacts. The lossy ground absorbers are manufactured from lossy material absorbing electrical resonance propagating through the leadframe assembly.
Abstract:
An electrical connector includes a housing having a terminating side and a front side that is configured to mate with a mating connector. The electrical connector also includes signal and ground conductors extending through the housing. The signal and ground conductors are configured to engage the mating connector. The signal conductors form a plurality of signal pairs configured to carry differential signals. The ground conductors are interleaved between the signal pairs. The electrical connector further has at least one resonance-control ground bus that includes a ground frame and a support body. The support body at least partially covers the ground frame. The support body comprises a lossy material. The ground frame includes multiple arms that each engage and electrically connect to a respective one of the ground conductors in order to electrically common the ground conductors that are engaged by the arms.
Abstract:
A contact module stack includes signal contact modules and ground contact modules flanking the signal contact modules in a ground-signal-signal-ground contact module arrangement. The signal contact modules each include signal leadframes and signal dielectric bodies. The ground contact modules each include ground leadframes and ground dielectric bodies. The ground leadframes each have at least one ground contact. Each ground dielectric body has a low loss layer on a first side of the ground leadframe and a lossy layer on a second side of the ground leadframe. The lossy layer and the low loss layer substantially enclose a transition portion of the ground contact. The lossy layers are manufactured from lossy material having conductive particles in a dielectric binder material. The lossy layers absorb electrical resonance propagating through the contact module stack.