Abstract:
A plug connector includes a plug body having a terminating end terminated to an electrical component and a mating end mated with a mating electrical connector. The plug body has first and second outer sides. The plug body has pockets between the first and second outer sides. A plug shroud extends from the plug body at the terminating end that is configured to be coupled to the electrical component. A contact array is held by the plug body and includes signal and ground contacts. The signal and ground contacts are exposed along the first and second outer sides. At least some of the ground contacts are aligned with corresponding pockets. Resonance-control lossy inserts are provided in corresponding pockets adjacent corresponding ground contacts. The lossy inserts are manufactured from lossy material capable of absorbing electrical resonance propagating through the plug body.
Abstract:
An electrical connector includes a housing stack comprising a front housing and a rear housing coupled to the front housing at a seam. The housing stack defines plural contact cavities that extend continuously through the front housing and the rear housing between mating and mounting ends. A lossy spacer is disposed at the seam between the front and rear housings. The lossy spacer has plural contact cavities aligned with corresponding contact cavities of the housing stack. Signal and ground contacts are disposed in corresponding contact cavities of the housing stack. The signal contacts extend through the lossy spacer such that the signal contacts do not directly engage the lossy spacer. The ground contacts extend through the contact cavities in the lossy spacer such that the ground contacts are coupled by the lossy spacer.
Abstract:
An electrical connector includes a housing stack having a first housing and a second housing stacked together with the first housing. The housing stack defines a mating end and a mounting end opposite the mating end. The housing stack defines signal contact cavities and ground contact cavities that extend continuously through the housings. At least one of the first housing and the second housing has pockets around the ground contact cavities with lossy spacers disposed therein each having a groove aligned with the corresponding ground contact cavity. Signal contacts are disposed in corresponding signal contact cavities. Ground contacts are disposed in corresponding ground contact cavities. The ground contacts are disposed in the grooves of the corresponding lossy spacers such that the ground contacts are coupled to the corresponding lossy spacers.
Abstract:
An electrical connector includes a housing and a plurality of contact modules and ground plates held by the housing. Each contact module includes left and right signal wafers stacked next to each other along a stack axis. The signal wafers include electrical terminals held by a dielectric body. The electrical terminals have mounting contacts protruding from the dielectric body at a mounting face of the housing. The electrical terminals of at least one of the signal wafers in each contact module are jogged toward the other signal wafer such that the mounting contacts of each contact module align in a column. Each of the ground plates is disposed along an outer side of a corresponding contact module.
Abstract:
Electrical connector includes a connector body having a front side configured to engage a mating connector and a mounting side configured to engage an electrical component. The electrical connector also includes a conductor array including a plurality of signal conductors and a plurality of ground conductors that extend through the connector body. The plurality of signal conductors includes adjacent signal conductors and the plurality of ground conductors include first and second ground conductors that are positioned between the adjacent signal conductors. The first and second ground conductors are separated from each other by a physical gap. The electrical connector also includes first and second resonance-control elements attached to the first and second ground conductors, respectively, within the gap between grounds. The first and second resonance-control elements are spaced from each other and include at least one of an electrically-lossy or magnetically-lossy material.
Abstract:
Pluggable connector includes a module body having a mating plug that is configured to be inserted into a receptacle assembly during a mating operation. The mating plug has first and second plug sides that face in opposite directions and a front edge that joins the first and second plug sides. The pluggable connector also includes a plurality of signal contacts that are positioned along the first and second plug sides and a ground plate disposed within the mating plug. The ground plate is positioned between the signal contacts along the first plug side and the signal contacts along the second plug side. The pluggable connector also includes a plurality of resonance-control blades disposed within the mating plug and extending between the ground plate and at least one of the first plug side or the second plug side. The resonance-control blades have edge projections that engage the ground plate.
Abstract:
An electrical connector assembly may include a plurality of signal isolating barriers. Each of the plurality of signal isolating barriers may be positioned around a group of board contacts proximate to a board connecting interface. Each of the plurality of signal isolating barriers isolates the group of the plurality of board contacts from other groups of the plurality of board contacts.
Abstract:
An electrical connector includes a housing and a plurality of ground wafers and signal wafers. A front side is configured to mate with a mating connector. The ground wafers and signal wafers are stacked next to one another along a stack axis. The ground wafers are interleaved between adjacent pairs of the signal wafers. Each signal wafer includes at least one signal conductor held by a signal holder that is composed of a first material. Each ground wafer includes at least one ground conductor held by a ground holder that is composed of second material. The second material is a lossy material and the first material is a low loss dielectric material that has a loss tangent that is lower than a loss tangent of the lossy material. The signal conductors and the ground conductors are configured to engage and electrically connect to the mating connector.
Abstract:
An electrical connector includes a housing having a first end and a second end with a mating slot formed between the first and second ends configured to receive a mating connector having contact pads. A leadframe assembly is disposed in the housing. The leadframe assembly has a contact array including ground contacts and signal contacts interspersed between corresponding ground contacts. The leadframe assembly has an overmold body supporting the ground and signal contacts. The overmold body has lossy ground absorbers coupled to corresponding ground contacts. The lossy ground absorbers are manufactured from lossy material absorbing electrical resonance propagating through the leadframe assembly.
Abstract:
An electrical connector includes a housing stack comprising a front housing and a rear housing coupled to the front housing at a seam. The housing stack defines plural contact cavities that extend continuously through the front housing and the rear housing between mating and mounting ends. A lossy spacer is disposed at the seam between the front and rear housings. The lossy spacer has plural contact cavities aligned with corresponding contact cavities of the housing stack. Signal and ground contacts are disposed in corresponding contact cavities of the housing stack. The signal contacts extend through the lossy spacer such that the signal contacts do not directly engage the lossy spacer. The ground contacts extend through the contact cavities in the lossy spacer such that the ground contacts are coupled by the lossy spacer.