Abstract:
An electrical connector includes a housing having a first end and a second end with a mating slot formed between the first and second ends configured to receive a mating connector having contact pads. A leadframe assembly is disposed in the housing. The leadframe assembly has a contact array including ground contacts and signal contacts interspersed between corresponding ground contacts. The leadframe assembly has an overmold body supporting the ground and signal contacts. The overmold body has lossy ground absorbers coupled to corresponding ground contacts. The lossy ground absorbers are manufactured from lossy material absorbing electrical resonance propagating through the leadframe assembly.
Abstract:
A plug connector includes a circuit card and a guide frame mounted to the circuit card. The circuit card is held by a housing. The circuit card includes a front edge and opposing outer edges. The circuit card defines a datum hole in a first surface. The circuit card further includes a set of contact pads along the first surface proximate to the front edge. The contact pads are registered relative to the datum hole. The guide frame has a base that has a post. The guide frame includes a frame member that extends from the base. An outer wall of the frame member is registered relative to the post. The post is received in the datum hole of the circuit card such that the outer wall of the frame member is registered relative to the contact pads, independent of locations of the outer edges of the circuit card.
Abstract:
A plug connector includes a plug body having a terminating end terminated to an electrical component and a mating end mated with a mating electrical connector. The plug body has first and second outer sides. The plug body has pockets between the first and second outer sides. A plug shroud extends from the plug body at the terminating end that is configured to be coupled to the electrical component. A contact array is held by the plug body and includes signal and ground contacts. The signal and ground contacts are exposed along the first and second outer sides. At least some of the ground contacts are aligned with corresponding pockets. Resonance-control lossy inserts are provided in corresponding pockets adjacent corresponding ground contacts. The lossy inserts are manufactured from lossy material capable of absorbing electrical resonance propagating through the plug body.
Abstract:
An electrical connector includes a housing having a terminating side and a front side that is configured to mate with a mating connector. The electrical connector also includes signal and ground conductors extending through the housing. The signal and ground conductors are configured to engage the mating connector. The signal conductors form a plurality of signal pairs configured to carry differential signals. The ground conductors are interleaved between the signal pairs. The electrical connector further has at least one resonance-control ground bus that includes a ground frame and a support body. The support body at least partially covers the ground frame. The support body comprises a lossy material. The ground frame includes multiple arms that each engage and electrically connect to a respective one of the ground conductors in order to electrically common the ground conductors that are engaged by the arms.
Abstract:
A ground contact module includes a ground leadframe having a ground contact with a transition portion extending between mating and terminating ends. A ground dielectric body holds the ground leadframe. The ground dielectric body has a low loss layer overmolded over the ground leadframe. The ground dielectric body has a lossy band separate and discrete from the low loss layer and attached thereto in proximity to the ground contact such that the lossy band is electrically coupled to the ground contact. The lossy band is manufactured from lossy material having conductive particles in a dielectric binder material and absorbs electrical resonance propagating through the contact module stack.
Abstract:
An electrical connector includes a housing having a mating housing and a contact organizer. The mating housing has a mating slot configured to receive a mating connector having contact pads. The contact organizer has signal and ground contact channels separated by separating walls with inner ends between the separating walls. The contact organizer has lossy fillers at the inner ends of the ground contact channels. The lossy fillers are manufactured from lossy material capable of absorbing electrical resonance propagating through the housing. The electrical connector includes a contact assembly disposed in the housing with ground contacts and signal contacts interspersed between corresponding ground contacts in corresponding ground and signal contact channels of the contact organizer. The ground contacts are positioned adjacent the lossy fillers at the inner ends of the corresponding ground contact channels.
Abstract:
An electrical connector includes a housing having a first end and a second end. The housing has a mating slot formed between the first and second ends configured to receive a mating connector having contact pads. A contact array is received in the housing. The contact array includes ground contacts and signal contacts interspersed between corresponding ground contacts. The ground contacts include attachment portions thereon. At least one lossy ground absorber is received in the housing and is coupled to at least one corresponding ground contact. Each lossy ground absorber includes at least one opening. The at least one opening receives the attachment portion of the corresponding ground contact.
Abstract:
A plug connector includes a circuit card and a guide frame mounted to the circuit card. The circuit card is held by a housing. The circuit card includes a front edge and opposing outer edges. The circuit card defines a datum hole in a first surface. The circuit card further includes a set of contact pads along the first surface proximate to the front edge. The contact pads are registered relative to the datum hole. The guide frame has a base that has a post. The guide frame includes a frame member that extends from the base. An outer wall of the frame member is registered relative to the post. The post is received in the datum hole of the circuit card such that the outer wall of the frame member is registered relative to the contact pads, independent of locations of the outer edges of the circuit card.
Abstract:
An interconnect system includes a circuit board including a substrate having a first surface and a second surface opposite the first surface, a plurality of signal conductors and a plurality of ground conductors including respective contact pads in a mating area of the substrate for engaging corresponding contacts of an electrical connector, and a plurality of ground vias extending at least partially through the substrate between the first and second surfaces. The ground vias are coupled to corresponding ground conductors. The ground vias include lossy plugs at least partially filling the ground vias. The lossy plugs are manufactured from lossy material capable of absorbing electrical resonance propagating through the substrate.
Abstract:
An interconnect system includes a circuit board including a substrate having a first surface and a second surface opposite the first surface, a plurality of signal conductors and a plurality of ground conductors including respective contact pads in a mating area of the substrate for engaging corresponding contacts of an electrical connector, and a plurality of ground vias extending at least partially through the substrate between the first and second surfaces. The ground vias are coupled to corresponding ground conductors. The ground vias include lossy plugs at least partially filling the ground vias. The lossy plugs are manufactured from lossy material capable of absorbing electrical resonance propagating through the substrate.