Abstract:
An electrical connector includes a housing having a first end and a second end with a mating slot formed between the first and second ends configured to receive a mating connector having contact pads. A leadframe assembly is disposed in the housing. The leadframe assembly has a contact array including ground contacts and signal contacts interspersed between corresponding ground contacts. The leadframe assembly has an overmold body supporting the ground and signal contacts. The overmold body has lossy ground absorbers coupled to corresponding ground contacts. The lossy ground absorbers are manufactured from lossy material absorbing electrical resonance propagating through the leadframe assembly.
Abstract:
Electrical connector having a plurality of compliant contacts coupled to a connector body. Each of the compliant contacts includes a base portion and first and second legs extending from the base portion to respective distal ends in a mounting direction. Each of the first and second legs includes an inner edge and an outer edge. Each of the inner edges extends from the base portion to a corresponding inflection area. A gap between the first and second legs decreases as the inner edges approach the corresponding inflection areas in the mounting direction. The inflection areas of the inner edges directly interface with each other at a contact zone.
Abstract:
An electrical connector is provided that includes a housing and ground contacts held by the housing for mating with corresponding ground contacts of a complementary mating connector. The ground contacts are plated with a ground contact plating that includes at least one ground contact plating material. Signal contacts are held by the housing for mating with corresponding signal contacts of the mating connector. The signal contacts are plated with a signal contact plating that includes at least one material that is different from the at least one ground contact plating material.
Abstract:
A header assembly of a mezzanine connector system may include a main housing defining signal channels extending through the main housing and ground channels extending into a first surface of the main housing, a plurality of signal modules, and a plurality of ground shields. At least a portion of each of the plurality of signal modules is retained within a respective one of the signal channels. At least a portion of each of the plurality of ground shields is retained within at least one of the ground channels.
Abstract:
Electrical connector having a plurality of compliant contacts coupled to a connector body. Each of the compliant contacts includes a base portion and first and second legs extending from the base portion to respective distal ends in a mounting direction. Each of the first and second legs includes an inner edge and an outer edge. Each of the inner edges extends from the base portion to a corresponding inflection area. A gap between the first and second legs decreases as the inner edges approach the corresponding inflection areas in the mounting direction. The inflection areas of the inner edges directly interface with each other at a contact zone.
Abstract:
A plug connector includes a plug body having a terminating end terminated to an electrical component and a mating end mated with a mating electrical connector. The plug body has first and second outer sides. The plug body has pockets between the first and second outer sides. A plug shroud extends from the plug body at the terminating end that is configured to be coupled to the electrical component. A contact array is held by the plug body and includes signal and ground contacts. The signal and ground contacts are exposed along the first and second outer sides. At least some of the ground contacts are aligned with corresponding pockets. Resonance-control lossy inserts are provided in corresponding pockets adjacent corresponding ground contacts. The lossy inserts are manufactured from lossy material capable of absorbing electrical resonance propagating through the plug body.
Abstract:
A ground contact module includes a ground leadframe having a ground contact with a transition portion extending between mating and terminating ends. A ground dielectric body holds the ground leadframe. The ground dielectric body has a low loss layer overmolded over the ground leadframe. The ground dielectric body has a lossy band separate and discrete from the low loss layer and attached thereto in proximity to the ground contact such that the lossy band is electrically coupled to the ground contact. The lossy band is manufactured from lossy material having conductive particles in a dielectric binder material and absorbs electrical resonance propagating through the contact module stack.
Abstract:
An electrical connector includes a housing having a mating housing and a contact organizer. The mating housing has a mating slot configured to receive a mating connector having contact pads. The contact organizer has signal and ground contact channels separated by separating walls with inner ends between the separating walls. The contact organizer has lossy fillers at the inner ends of the ground contact channels. The lossy fillers are manufactured from lossy material capable of absorbing electrical resonance propagating through the housing. The electrical connector includes a contact assembly disposed in the housing with ground contacts and signal contacts interspersed between corresponding ground contacts in corresponding ground and signal contact channels of the contact organizer. The ground contacts are positioned adjacent the lossy fillers at the inner ends of the corresponding ground contact channels.
Abstract:
An electrical connector includes a housing having a first end and a second end. The housing has a mating slot formed between the first and second ends configured to receive a mating connector having contact pads. A contact array is received in the housing. The contact array includes ground contacts and signal contacts interspersed between corresponding ground contacts. The ground contacts include attachment portions thereon. At least one lossy ground absorber is received in the housing and is coupled to at least one corresponding ground contact. Each lossy ground absorber includes at least one opening. The at least one opening receives the attachment portion of the corresponding ground contact.
Abstract:
Electrical connector includes a connector housing having a front side configured to mate with a mating connector and a mounting side configured to be mounted to a circuit board. The electrical connector also includes signal and ground conductors that extend through the connector housing between the front and mounting sides. The signal conductors form a plurality of signal pairs. The ground conductors are positioned relative to the signal pairs to form a plurality of ground-signal-signal-ground (GSSG) sub-arrays. Each GSSG sub-array includes a corresponding signal pair and first and second ground conductors that separate the corresponding signal pair from adjacent signal pairs. The electrical connector also includes a plurality of resonance-control bridges in which each resonance-control bridge electrically couples the first and second ground conductors of a corresponding GSSG sub-array. Each of the resonance-control bridges includes at least one of a capacitor or a resistor.