Abstract:
A flash includes a substrate. Two gate structures are disposed on the substrate. Each of the gate structures includes a floating gate and a control gate. The control gate is disposed on the floating gate. An erase gate is disposed between the gate structures. Two word lines are respectively disposed at a side of each of the gate structures. A top surface of each of the word lines includes a first concave surface and a sharp angle. The sharp angle is closed to a sidewall of the word line which the sharp angle resided. The sidewall is away from each of the gate structures. The shape angle connects to the first concave surface.
Abstract:
A method for manufacturing a semiconductor device includes the following steps. At first, two gate stack layers are formed on a semiconductor substrate, wherein each of the gate stack layers includes a top surface and two side surfaces. A conductive material layer is deposited to conformally cover the top surface and the two side surfaces of each of the gate stack layers. Then, a cap layer is deposited to conformally cover the conductive material layer. Finally, the cap layer and the conductive material layer above the top surface of each of the gate stack layers are removed to leave the cap layer adjacent to the two side surfaces of each of the gate stack layers and covering a portion of the conductive material layer.
Abstract:
A memory device includes a semiconductor substrate, isolation structures, an erase gate, and floating gates. The isolation structures are disposed in the semiconductor substrate. Active regions separated from one another are defined in the semiconductor substrate by the isolation structures, and each of the active regions is elongated in a first direction. The erase gate is disposed on the semiconductor substrate and elongated in a second direction. The erase gate is disposed on the active regions and the isolation structures, and the erase gate is partly disposed in a recess within each of the isolation structures. The floating gates are disposed on the semiconductor substrate. The floating gates are arranged in the second direction and separated from one another, and each of the floating gates is partly disposed under the erase gate in a vertical direction.
Abstract:
A semiconductor memory device includes a substrate; a source diffusion region in the substrate; a pair of floating gates disposed on opposite of the source diffusion region; a first dielectric cap layer disposed directly on each of the floating gates; an erase gate disposed on the source diffusion region and partially overlapping an upper inner corner of each of the floating gates; a second dielectric cap layer disposed on the erase gate and the first dielectric cap layer; a select gate disposed on a sidewall of the first dielectric cap layer; and a drain diffusion region disposed in the substrate and adjacent to the select gate.
Abstract:
A flash includes a substrate. Two gate structures are disposed on the substrate. Each of the gate structures includes a floating gate and a control gate. The control gate is disposed on the floating gate. An erase gate is disposed between the gate structures. Two word lines are respectively disposed at a side of each of the gate structures. A top surface of each of the word lines includes a first concave surface and a sharp angle. The sharp angle is closed to a sidewall of the word line which the sharp angle resided. The sidewall is away from each of the gate structures. The sharp angle connects to the first concave surface.
Abstract:
An integrated circuit structure includes a substrate with a circuit region thereon and a copper interconnect structure disposed on the substrate. The copper interconnect structure includes an uppermost copper layer covered by a dielectric layer. An aluminum pad layer is provided on the dielectric layer. A metal layer is provided on the circuit region and is located between the uppermost copper layer and the aluminum pad layer.
Abstract:
A semiconductor memory device includes a substrate, shallow trench isolations protruding from the substrate, a floating gate formed conformally on the surface of the recess between each shallow trench isolation, a tunnel layer formed between each floating gate and the substrate, a dielectric layer formed conformally on the floating gates, and a control gate formed on the dielectric layer.
Abstract:
A floating gate forming process includes the following steps. A substrate containing active areas isolated from each other by isolation structures protruding from the substrate is provided. A first conductive material is formed to conformally cover the active areas and the isolation structure. An etch back process is performed on the first conductive material to respectively form floating gates separated from each other in the active areas.