Abstract:
A system for controlling a plurality of hydraulic effectors operably connected to an engine to control engine parameters. The system also includes a plurality of sensors operably connected to measure a state or parameter of each effector, a pump configured to supply fluid to the plurality of effectors, and a controller operably connected to the plurality of sensors, the plurality of effectors, and the pump. The controller executes a method for an adaptive model-based control for controlling each effector, The method includes receiving a request indicative of a desired state for each effector, receiving a weighting associated each request, obtaining information about a current state of each effector, and updating an adaptive model based control (MBC) based upon the information. The method also includes generating a control command for an effector based upon the adaptive MBC and commanding the effector based upon the control command.
Abstract:
Systems and methods for controlling a fluid-based system are disclosed. The systems and methods may include a model processor for generating a model output, the model processor including a set state module for setting dynamic states, the dynamic states input to an open loop model based on the model operating mode, where the open loop model generates current state derivatives, solver state errors, and synthesized parameters as a function of the dynamic states and a model input vector. A constraint on the current state derivatives and solver state errors is based on mathematical abstractions of physical laws that govern behavior of a component using a material temperature utility. The model processor may further include an estimate state module for determining an estimated state of the model based on at least one of a prior state, the current state derivatives, the solver state errors, and the synthesized parameters.
Abstract:
A full authority digital engine controller (FADEC) based system is also disclosed. The system includes a processor, and a tangible, non-transitory memory configured to communicate with the processor, the tangible, non-transitory memory having instructions stored thereon that, in response to execution by the processor, cause the FADEC to perform operations. The operations may include measuring a first temperature at a first sensor disposed at a first known location of an engine, measuring a second temperature at a second sensor disposed at a second known location of the engine, and estimating at least one of a stress or a strain of a part or component in the engine based on the first temperature and the second temperature. The system may control fuel flow and/or other engine effectors during a thrust transient to limit the estimated stress or the estimated strain of the component from exceeding a predetermined threshold.
Abstract:
Systems and methods for controlling a fluid based engineering system are disclosed. The systems and methods may include a model processor for generating a model output, the model processor including a set state module for setting dynamic states of the model processor, the dynamic states input to an open loop model based on the model operating mode, wherein the open loop model generates a current state model as a function of the dynamic states and the model input, wherein a constraint on the current state model is based a series of cycle synthesis modules, each member of the series of cycle synthesis modules modeling a component of a cycle of the control system and including a series of utilities, the utilities are based on mathematical abstractions of physical properties associated with the component. The series of utilities may include a material temperature utility for determining a material temperature associated with a component of the cycle of the control system The model processor may further include an estimate state module for determining an estimated state of the model based on a prior state model output and the current state model of the open loop model.
Abstract:
A gas turbine engine inlet sensor fault detection and accommodation system comprises an engine model, an engine parameter comparison block, an inlet condition estimator, control laws, and a fault detection and accommodation system. The engine model is configured to produce a real-time model-based estimate of engine parameters. The engine parameter comparison block is configured to produce residuals indicating the difference between the real-time model-based estimate of engine parameters and sensed values of the engine parameters. The inlet condition estimator is configured to iteratively adjust an estimate of inlet conditions based on the residuals. The control laws are configured to produce engine control parameters for control of gas turbine engine actuators based on the inlet conditions. The fault detection and accommodation system is configured to detect faults in inlet condition sensors, select sensed inlet conditions for use by the control laws in the event of no fault, and select estimated inlet conditions for use by the control laws in the event of inlet condition sensor fault.
Abstract:
A full authority digital engine controller (FADEC) based system is also disclosed. The system includes a processor, and a tangible, non-transitory memory configured to communicate with the processor, the tangible, non-transitory memory having instructions stored thereon that, in response to execution by the processor, cause the FADEC to perform operations. The operations may include measuring a first temperature at a first sensor disposed at a first known location of an engine, measuring a second temperature at a second sensor disposed at a second known location of the engine, and estimating at least one of a stress or a strain of a part or component in the engine based on the first temperature and the second temperature. The system may control fuel flow and/or other engine effectors during a thrust transient to limit the estimated stress or the estimated strain of the component from exceeding a predetermined threshold.
Abstract:
A method of adaptive anti-windup protection for a control system with cascaded inner control loop and an outer control loops. The method includes receiving an outer loop feedback signal indicative of the response of a plant controlled by the outer control loop and calculating an inner control loop request such that, it would cause saturation of the control device controlled by the inner control loop. The method also includes converting the calculated inner loop request to outer loop anti-windup request limits using kinematic relationships and transmitting the outer loop anti-windup request limits to a controller of the outer control loop. The method may also include applying the outer loop anti-windup request limits to a controller of the outer control loop to limit the inner loop request generated thereby, and executing an outer control loop control law and an inner control loop control law subject to the anti-windup request limits.
Abstract:
A power turbine control system for a gas turbine engine may comprise a controller comprising one or more processors in communication with the gas turbine engine. The processors may comprise an engine control module configured to receive a torque request signal and generate a torque achieved signal. A rate of change of power turbine speed estimation module may generate an estimated rate of change of power turbine speed signal. A dynamic inversion power turbine governor module may generate the torque request signal based on the torque achieved signal and estimated rate of change of power turbine speed signal.
Abstract:
An engine control system includes an electronic hardware engine controller and an actuator that operates at different positions to control operation of an engine. An actuator sensor measures an actuator position, and the engine controller generates a synthesized actuator position. In response to detecting a faulty actuator, a faulty actuator sensor, or both, the engine controller adjusts the position of the actuator based on the synthesized actuator position.
Abstract:
An engine control system includes an electronic hardware engine controller in signal communication with at least one engine sensor, which measures an engine operating parameter (Ycrtr_t). The engine controller generates a synthesized engine operating parameter (Ycrtr) calculates an error (ERRcrtr) between the engine operating parameter (Ycrtr_t) and the synthesized engine operating parameter (Ycrtr). The engine controller further determines a corrector error parameter (Xcrtr) and determines a faulty sensor among the at least one engine sensor based on a comparison between the error value (ERRcrtr) and the corrector error parameter (Xcrtr).