Abstract:
A gas turbine engine includes a plurality of blades, a sensor configured to detect vibration on one or more of the plurality of blades, and a controller coupled to the sensor and configured to adjust a blade incidence upon an onset of vibration being detected by the sensor wherein the adjustment of the blade incidence reduces the vibration.
Abstract:
A hollow blade of a gas turbine engine has a sacrificial elongated damper disposed slideably in a chamber for minimizing modes of vibration during operation. The chamber is defined between two opposing surfaces generally spanning radially outward from an axis of the engine and a face facing radially inward. The damper is constructed and arranged to make loaded contact with the face via a centrifugal force created by rotation of the engine.
Abstract:
A gas turbine engine includes a circumferential array of stator vanes that have first and second vanes with different vibrational frequencies than one another. The first vanes are arranged in circumferentially alternating relationship with the second vanes.
Abstract:
A gas turbine engine includes a fan rotating with a fan shaft, a compressor and a turbine section. The turbine section includes a fan drive rotor driving the fan through the fan shaft. At least one bearing is between an inner static case and the fan shaft. The inner static case is cantilever mounted to static structure, and has a forward end spaced in a forward direction toward the fan rotor from a cantilever mount. A damping assembly is associated with the inner static case.
Abstract:
A gas turbine engine includes a fan section that has a fan. A fan casing surrounds the fan section. A compressor section defines an engine axis. A gear train reduces a rotational speed of the fan relative to a shaft. A low pressure turbine is coupled to the shaft. A nacelle extends along the engine axis and surrounds the fan casing, a bypass ratio of greater than 10. A variable area fan nozzle defines a discharge airflow area. A flutter sensing system includes a controller programmed to move the variable area fan nozzle to vary the discharge airflow area in response to detecting an airfoil flutter condition associated with adjacent airfoils of the fan.
Abstract:
A method of developing a suggested blend repair to an airfoil includes the steps of: (a) storing history with regard to a particular airfoil in a particular engine; (b) taking information with regard to new damage to the particular airfoil; (c) reaching an initial blend recommendation based upon step (b); (d) assessing whether the initial blend recommendation of step (c) would be appropriate to repair the new damage based upon a consideration of steps (a)-(c); and (e) reporting a final blend recommendation. An airfoil repair recommendation system is also disclosed.
Abstract:
A novel probabilistic method for analyzing high cycle fatigue (HCF) in a design of a gas turbine engine is disclosed. The method may comprise identifying a component of the gas turbine engine for high cycle fatigue analysis, inputting parametric data of the component over a predetermined parameter space into at least one computer processor, using the at least one computer processor to build a plurality of flexible models of the component based on the parametric data of the component over the predetermined parameter space, using the at least one computer processor to build a plurality of emulators of the component based on the plurality of flexible models, and using the at least one computer processor to predict a probability of HCF based at least in part on the parametric data of the component over the predetermined parameter space and the plurality of emulators.
Abstract:
A process for repairing an aircraft engine component includes receiving a plurality of component measurements of a damaged component, comparing the plurality of component measurements of the damaged component to a finite element model of an ideal component, generating a finite element model of the damaged component based at least partially on the comparison, determining a corrective material removal operation based at least in part on the finite element model of the damaged component, and removing material from the damaged component according to the corrective material removal operation, thereby creating a repaired component.
Abstract:
An anti-ice arrangement for a gas turbine engine may comprise an engine static structure, a fan blade housed for rotation within the engine static structure, and a magnetic field source mounted in close proximity to the fan blade and configured for inducing eddy currents in the fan blade to increase a surface temperature of the fan blade.
Abstract:
A hollow blade of a gas turbine engine has a sacrificial elongated damper disposed slideably in a chamber for minimizing modes of vibration during operation. The chamber is defined between two opposing surfaces generally spanning radially outward from an axis of the engine and a face facing radially inward. The damper is constructed and arranged to make loaded contact with the face via a centrifugal force created by rotation of the engine.