Abstract:
Embodiments of a method for producing a diesel range material having improved cold flow properties are provided. In one embodiment, the method includes the steps of providing a waxy diesel range feedstock, producing an intermediary product stream containing a predetermined amount of oxygenated organocompounds from the waxy diesel range feedstock, and contacting the intermediary product stream with a dewaxing catalyst under process conditions at which the oxygenated organocompounds chemically interact with the dewaxing catalyst to convert a portion of the n-paraffins within the intermediary product stream to iso-paraffins while minimizing cracking of the diesel range material.
Abstract:
A process is disclosed for hydrocracking a primary hydrocarbon feed and a diesel co-feed in a hydrocracking unit and hydrotreating a diesel product from the hydrocracking unit in a hydrotreating unit. The diesel stream fed through the hydrocracking unit is pretreated to reduce sulfur and ammonia and can be upgraded with noble metal catalyst.
Abstract:
A process is presented for the production of high quality kerosene from lower quality feedstocks, including kerosene produced from coker units, or kerosene from cracking units. The process includes hydrotreating the feedstock to remove contaminants in the feedstock. The hydrotreated process stream is then treated in a trim reactor at higher pressure to reduce the bromine index of the kerosene.
Abstract:
Methods and apparatuses for desulfurizing hydrocarbon streams are provided herein. In one embodiment, a method for desulfurizing a hydrocarbon stream includes separating the hydrocarbon stream into a heavier fraction and a lighter fraction. The heavier fraction includes a relatively higher amount of lower octane mono-unsaturates and the lighter fraction includes a relatively higher amount of higher octane mono-unsaturates. The method further includes hydrodesulfurizing the heavier fraction in a first hydrodesulfurization zone and hydrodesulfurizing the lighter fraction in a second hydrodesulfurization zone. Further, the method forms a hydrodesulfurized stream from the heavier fraction and the lighter fraction.
Abstract:
A process and apparatus is disclosed for pretreating a hydrocarbon stream in a hydrotreating reactor and separating the diesel materials from the pretreated effluent before the heavier liquid materials are fed to a hydrocracking unit. Thus diesel materials are preserved but recovered along with the hydrocracked effluent. A recovered diesel stream can be sent to a hydrotreating unit to improve its cetane rating.
Abstract:
Methods and apparatuses for desulfurizing hydrocarbon streams are provided herein. In one embodiment, a method for desulfurizing a hydrocarbon stream includes separating the hydrocarbon stream into a heavier fraction and a lighter fraction. The heavier fraction includes a relatively higher amount of lower octane mono-unsaturates and the lighter fraction includes a relatively higher amount of higher octane mono-unsaturates. The method further includes hydrodesulfurizing the heavier fraction in a first hydrodesulfurization zone and hydrodesulfurizing the lighter fraction in a second hydrodesulfurization zone. Further, the method forms a hydrodesulfurized stream from the heavier fraction and the lighter fraction.
Abstract:
A process and apparatus are disclosed for hydrotreating a hydrocarbon feed in a hydrotreating unit and hydrocracking a liquid hydrotreating effluent stream in a hydrocracking unit. A hot separator separates the diesel in a liquid hot hydrotreating effluent stream that serves as feed to the hydrocracking unit. Low sulfur diesel product can be saturated to further upgrade its cetane rating.
Abstract:
A process and apparatus are disclosed for hydrotreating a hydrocarbon feed in a hydrotreating unit and hydrocracking a second hydrocarbon stream in a hydrocracking unit. The hydrocracking unit and the hydrotreating unit may share the same recycle gas compressor. A make-up hydrogen stream may also be compressed in the recycle gas compressor. The second hydrocarbon stream may be a diesel stream from the hydrotreating unit. The diesel stream may be a diesel and heavier stream from a bottom of a hydrotreating fractionation column.
Abstract:
Processes for hydrotreating a hydrocarbon stream in which a separation zone and a stripping zone is disposed between two hydrotreating reactors. The stripping zone may comprise a portion of the second hydrotreating reactor. The separation zone may comprise two separator vessels. A separator vessel may include the scrubbing zone to receive a scrubbing fluid, for example, steam, hydrogen, or heated effluent, and remove H2S and NH3. A divided wall separator may be used. Vapor from the separator vessels can be recycled in the system.
Abstract:
A process is disclosed for hydrocracking a primary hydrocarbon feed and a diesel co-feed in a hydrocracking unit and hydrotreating a diesel product from the hydrocracking unit in a hydrotreating unit. The diesel stream fed through the hydrocracking unit is pretreated to reduce sulfur and ammonia and can be upgraded with noble metal catalyst.